1 / 13

Warm Up Divide. Round answers to the nearest tenth. 1. 2. 3. 4.

73 21. 420 18. 380 16. 430 18. Warm Up Divide. Round answers to the nearest tenth. 1. 2. 3. 4. 23.3. 3.5. 23.9. 23.8. A rate is a comparison of two quantities measured in different units. 90 3. Ratio:. Read as “ 90 miles per 3 hours. ”. 90 miles 3 hours. Rate:. 90 3.

Download Presentation

Warm Up Divide. Round answers to the nearest tenth. 1. 2. 3. 4.

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 73 21 420 18 380 16 430 18 Warm Up Divide. Round answers to the nearest tenth. 1.2. 3.4. 23.3 3.5 23.9 23.8

  2. A rate is a comparison of two quantities measured in different units. 90 3 Ratio: Read as “90 miles per 3 hours.” 90 miles 3 hours Rate:

  3. 90 3 The ratio can be simplified by dividing: Unit rates are rates in which the second quantity is 1. 90 3 30 1 = 30 miles, 1 hour unit rate: or 30 mi/h

  4. 30 words minute 1 2 30 words • 2 minute • 2 1 2 Additional Example 1: Finding Unit Rates Geoff can type 30 words in half a minute. How many words can he type in 1 minute? Write a rate. Multiply to find words per minute. 60 words 1 minute = Geoff can type 60 words in one minute.

  5. Additional Example 2A: Chemistry Application Five cubic meters of copper has a mass of 44,800 kilograms. What is the density of copper? 44,800 kg 5 m3 Write the rate. 44,800 kg ÷ 5 5 m3 ÷ 5 Divide to find kilograms per 1 m3. 8,960 kg 1 m3 Copper has a density of 8,960 kg/m3.

  6. Additional Example 2B: Chemistry Application A piece of gold with a volume of 0.5 cubic meters weighs 9650 kilograms. What is the density of gold? 9650 kg 0.5 m3 Write the rate. 9650 kg • 2 0.5 m3 • 2 Multiply to find kilograms per 1 m3. 19,300 kg 1 m3 Gold has a density of 19,300 kg/m3.

  7. 455 students 91 computers 468 students 91 computers  5 students 1 computer  Additional Example 3A: Estimating Unit Rates Estimate each unit rate. 468 students to 91 computers Choose a number close to 468 that is divisible by 91. Divide to find students per computer. 468 students to 91 computers is approximately 5 students per computer.

  8. 320 feet 8 seconds 313 feet 8 seconds  40 feet 1 second  Additional Example 3B: Estimating Unit Rates Estimate each unit rate. 313 feet in 8 seconds Choose a number close to 313 that is divisible by 8. Divide to find feet per second. 313 feet to 8 seconds is approximately 40 feet per second.

  9. Unit price is a unit rate used to compare price per item.

  10. Additional Example 4A: Finding Unit Prices to Compare Costs Pens can be purchased in a 5-pack for $1.95 or a 15-pack for $6.20. Which pack has the lower unit price? Divide the price by the number of pens. price for package number of pens $1.95 5 = = $0.39 price for package number of pens $6.20 15 = $0.41  The 5-pack for $1.95 has the lower unit price.

  11. price for jar number of ounces price for jar number of ounces Additional Example 4B: Finding Unit Prices to Compare Costs Jamie can buy a 15 oz jar of peanut butter for $2.19 or a 20 oz jar for $2.78. Which jar has the lower unit price? Divide the price by the number of ounces. $2.19 15 = $0.15  $2.78 20 = $0.14  The 20 oz jar for $2.78 has the lower unit price.

  12. Lesson Review: Part I 1. Meka can make 6 bracelets per half hour. How many bracelets can she make per hour? 2. A penny has a mass of 2.5 g and a volume of approximately 0.360 cm3. What is the approximate density of a penny? Estimate each unit rate. 3. $2.22 for 6 stamps 4. 8 heartbeats in 6 seconds 12 ≈ 6.94 g/cm3 $0.37 per stamp 1.3 beats/s

  13. Lesson Review: Part II Find each unit price. Then tell which has the lower unit price. 5. A half dozen carnations for $4.75 or a dozen for $9.24 6. 4 pens for $5.16 or a ten-pack for $12.90. a dozen They cost the same.

More Related