1 / 34

Lyric-based Artist Network

Lyric-based Artist Network. Derek Gossi CS 765 Fall 2014. The Big Problem. How do we make better music recommendations?. The Big Problem. How do we make better music recommendations?. Personalized recommendations Anonymous recommendations based on similarity Playlist generation.

Download Presentation

Lyric-based Artist Network

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Lyric-based Artist Network Derek Gossi CS 765 Fall 2014

  2. The Big Problem How do we make better music recommendations?

  3. The Big Problem How do we make better music recommendations? Personalized recommendations Anonymous recommendations based on similarity Playlist generation

  4. The Big Problem How do we make better music recommendations? • Ideally: Understand all the factors which link songs or artists together

  5. Topics • Background on Music Recommendation • The Dataset • Existing Research • Proposed Research

  6. BACKGROUND ON MUSIC RECOMMENDATION

  7. Music Recommendation Systems

  8. Approaches to Recommendation • Collaborative Filtering • Users that liked thisartist/song also liked thatartist/song • Amazon, iTunes store, Spotify • Tagging • Categorization based on user-generated or pre-defined tags • Calm, sad, romantic, cheerful, anxious, depressed • Last.fm • Content-based • Look at the audio signal • Not widely used in industry yet • Pandora, Spotify (in progress) • What can the lyrics tell us?

  9. Approaches to Recommendation

  10. The Problem with Tags

  11. Care vs. Scale B Whitman, Co-Founder of The Echo Nest, “How music recommendation works—and doesn’t work”

  12. Care vs. Scale B Whitman, Co-Founder of The Echo Nest, “How music recommendation works—and doesn’t work”

  13. Comparison of Approaches • Collaborative filtering is widely used in practice • Precision vs. Profit • Even though you might like x better, Amazon makes more money by recommending y • Probably less of an issue for subscription services such as Spotify • Existing recommendation systems largely do not take content of music into account • Why? • Possibility for large error • Computational cost • Still being researched

  14. MIR (Music Information Retrieval) • Emerging area of research • Gathering information directly from audio signal • Success in determining tempo, key, and loudness • Research in time signature tracking, melody detection

  15. MIR (Music Information Retrieval) • What about trying to predict location on reduced-dimension latent space of users and songs using audio features? • Deep learning methodologies

  16. The Question • Can lyrics be used to improve recommender systems? • Benefits of lyrical analysis approach • Known factors make for easy error checking • Large-scale factors such as repetition or key words are easy to compute • Nearly as scalable as pure audio analysis for most popular genres • Disadvantages of lyrical analysis approach • Not all songs have lyrics! • Text analysis is a subtle and complex problem too • Audio + lyrics make for new interpretations • Reducing to artist level will “average out” some error • A combined approach will likely be the best approach

  17. Care vs. Scale B Whitman, Co-Founder of The Echo Nest, “How music recommendation works—and doesn’t work”

  18. Care vs. Scale Lyrical analysis B Whitman, Co-Founder of The Echo Nest, “How music recommendation works—and doesn’t work”

  19. Care vs. Scale Lyrical analysis + audio analysis + CF Lyrical analysis B Whitman, Co-Founder of The Echo Nest, “How music recommendation works—and doesn’t work”

  20. The dataset The Million Song Dataset (MSD)

  21. Million Song Dataset • Open source dataset released in Feb 2011 • Metadata and audio features for a million contemporary audio tracks

  22. The Million Song Dataset Challenge • Online competition • Given full listening history for 1 million users • Given half of the listening history for 110,000 users • Goal: predict the other half of the listening history • Metric: mean average precision • Best ranked teams used some form collaborative filtering • See F. Aiolli, “A Preliminary Study on a Recommender System for the Million Song Dataset Challenge”

  23. The Million Song Dataset Challenge

  24. Existing research A Summary

  25. Network Topology • P. Cano, O. Celma, and M. Koppenberger.“The topology of music recommendation networks,” Feb 2008. • Analyzes four music recommendation systems from a network perspective • Directed edges • n = 16,302 (Yahoo) to 51,616 (MSN) • m = 158,866 (AMG) to 511,539 (Yahoo) • Small-world properties in all networks • Average shortest path < 8 • Clustering coefficient from 0.14 (Amazon) to 0.54 (MSN)

  26. Lyrical Analysis • X. Hu, J. S. Downie, and A. F. Ehmann.“Lyric text mining in music mood classification,” 2009. • 2,829 unique audio tracks from last.fm with lyrics and tags • Tags grouped into 18 distinct categories • calm, comfort quiet, serene, mellow, chill out, … • grief, heartbreak, mournful, sorrow, sorry, … • Objective: predict tag category • Lyrical model, audio feature model, and combined model • Lyrical features were found to outperform audio in cases

  27. Lyrical Analysis • Y. Xia, K. Wong, L. Wang, and M. Xu. “Sentiment vector space model for lyric-based song sentiment classification,” June 2008. • Custom sentiment vector space model (s-VSM) used to classify 2,653 Chinese pop songs • Only two classes: light-hearted and heavy-hearted • Lyrics found to outperform audio features in the classification problem

  28. PROPOSED RESEARCH

  29. Proposed Research • Use the MSD to create a network of songs and artists linked by threshold lyrical similarity • Metric of similarity will be based on: • Use of key words or key word groups • Word complexity and range of words used • Sentiment • Random sample will need to be used, as mapping full dataset would require ~750,0002 iterations • Cluster the network into n distinct “communities” • Unsupervised approach

  30. Research Questions • Network properties? • Scale, clustering, etc. • What are the most natural communities? • Genre, mood, complexity? • How does it compare to existing models? • How much error is introduced by using lyrics only? • How does the network topology of artists linked by lyrical similarity possess compare to existing user-based collaborative filtering networks? • Can it be used to improve music recommendation?

  31. Questions?

More Related