730 likes | 778 Views
MPCOMP. MPCOMP Master Program on Computer Science Ceará - Brasil. EVOLVING AN INTELLIGENT FRAMEWORK FOR DECISION- MAKING PROCESS IN E-HEALTH SYSTEMS. MAURO OLIVEIRA www.maurooliveira.com.br. LAR-A Computer Network Laboratory of Aracati. Team working on this project.
E N D
MPCOMP MPCOMP Master Programon Computer Science Ceará - Brasil EVOLVING AN INTELLIGENT FRAMEWORK FORDECISION- MAKING PROCESS IN E-HEALTH SYSTEMS MAURO OLIVEIRA www.maurooliveira.com.br LAR-A Computer Network Laboratoryof Aracati
Team workingonthis project EVOLVING AN INTELLIGENT FRAMEWORK FOR DECISION- MAKING PROCESS IN E-HEALTH SYSTEMS
About this lecture … LARIISA is an intelligent framework for enhancing the decision making process on the health public system. • This lecture presents the evolution of LARIISA towards an intelligent classifier model and the new Cube architecture.
Summary 1. Contextualization 2. LARIISA Solution (2010) 3. Ontologyand Health Application 4. LARIISA Architecture 5. LARIISA Prototypes - Dengue feverstudy case (2012) - A Bayesian Approach (2013) - Caregiving (2014) - CarAciddent (2015) 6. LARIISA Next Generation - AnIntelligentClassifier for LARIISA - LARIISA Cube Architecture 7. Conclusion
Health System’sEvolution Fonte: K. Jennings, K. Miller, S. Materna (1997) Industrial Era InformationEra Cost Cost ¢ $ $ ¢ DiseaseTreatment DiseasePrevention HOSPITAL HOMECARE
CONTEXTUALIZATION Health System - Information Era BasedonDisease PREVENTION Encouraged Costs ¢ Primary Health Care DescentralizationofPublic Health System Health Agent Hospital (specialits) $ Discouraged Fonte: K. Jennings, K. Miller, S. Materna (1997)
PROBLEM DESCENTRALIZATION Hospital (specialits) Message Management IncreasingComplexityof Health Management Information Health Agent Primary Health Care Data Acquisition
GENESIS oftheLARIISA Project The objectiveoftheLARIISAistoprovide a software platformthatallowsthe decision-making model for public health system. Decision-making Application Inference Mechanism Health Knowledge Context-aware Technology Real Time Information
SOLUTION DESCENTRALIZATION PROBLEM CONTEXT-AWARE FRAMEWORK Decision-Making ONTOLOGY Knowledge Representation Information InferenceMechanism LARIISA: anIntelligent System tosupportdecision-makingprocess Health Knowledge Geolocation Metadata
LARIISA, A Context-Aware Framework for Health Care Governance Decision-Making Systems: A model based on the Brazilian Digital TV Mauro Oliveira & OdoricoMonteiro
Knowledge Management INTELLIGENCE FOR DECISION- MAKING PROCESS IN E-HEALTH SYSTEMS Shared Information Normative Administration ClinicalEpidemiology
3. Ontologyand Health Application
Why do weneedOntologiesin healthcareAplication? REPRESENTING INFORMATION • An ontology is a "formal, explicit specification of a shared conceptualisation". • It formally represents knowledge as a set of concepts within a domain, and the relationships between theses concepts. • It can be used to model a domain and support reasoning about concepts REAL INFORMATION Semantic INTEROPERABILITY Problem
Why do weneedOntologiesin healthcareAplication? • PROBLEM: Data integrationwithdiferent standards • AHA/MIT-BIH (Physionet) • SCP-ECG (ISO/DIS 11073-91064) • HL7 aECG ELECTROCARDIOGRAM
Why do weneedOntologiesin healthcareAplication? Ontology AHA/MIT-BIH SCP-ECG HL7 aECG
Why do weneedOntologiesin healthcareAplication? Reference Model Standard4 Standard1 Standard2 Standard3
SemanticDistance Conceptualization Interpretation TanTanTan TAN...
SemanticDistance Conceitualization Interpretation
LARIISA Local health context model Prague, Czech Republic July/2013
LARIISA Global health context model Prague, Czech Republic July/2013
LARIISA’sScenario KnowledgeRepresentation (ONTOLOGY) Data Acquisition (CONTEXT) METADATA DECISION-MAKING
LARIISA Architecture: a context-aware framework Data Acquisition ContextProviders Health Agent Device Internet Symptoms + sus_id User Device Data Processing Metadata Publishing Security Protocol ContextAggregator (CA) Health Managers System InferenceRules Global Context Local Context
LARIISAproposes aContext-Aware Web Content Generator Based on Personal Tracking Humidity Sensor Temperature Sensor AtmosphericPressure Sensor Accelerometer Global Positioning System (GPS) Internet Connection Compass Digital Camera Light Sensor GeographicalInformation System (GIS) Proximity Sensor Gyroscope ...manydevicesensorsto explore andcollectinformationfromusers...
Digital Camera Global Positioning System (GPS) Internet Connection Proximity Sensor Compass Gyroscope Accelerometer Light Sensor Temperature Sensor Humidity Sensor GeographicalInformation System (GIS) AtmosphericPressure Sensor Medical Sensors
The diagnosis <0023821992> was taken at <S 3° 45' 48.6429“>, <W 38° 36' 28.7434“>, <Av. F, 126-298-Conj. Ceará, Fortaleza – CE> on <March 2nd, 2013> at <17:00h>. Heart rate was <110 bpm>, body temperature was <40°C> and blood pressure was <140/90>. Symptoms: <A, B, C>. SUS ID: <209968974640021>. LARIISA META DATA <diagnosis_id>0023821992</diagnosis_id> <lat>3° 45' 48.6429"</lat> PersonalTracking <lon>38° 36' 28.7434"</lon> <time>17:00</time> via Web Service <date>03/02/2013</date> <body_temp>40°C</body_temp> <heart_rate>110bpm</heart_rate> Diagnosis data <blood_pressure>140/90</blood_pressure> metadata file <loc_name>Av. F, 126-298-Conj. Ceará, Fortaleza - CE</loc_name> <symptom>A, B, C</symptom> PatientIdentification!! <sus_id>209968974640021</sus_id>
LARIISA’sScenario KnowledgeRepresentation (ONTOLOGY) Data Acquisition (CONTEXT) METADATA Step 1 LARIISA: A Context-aware Framework BasedonOntology Technology Step 2 DECISION-MAKING Step 3
5. LARIISA Prototypes - Dengue feverstudy case (2012)
LARIISA: Dengue Fever Case Study KnowledgeRepresentation (ONTOLOGY) Data Acquisition (CONTEXT) METADATA Step 1 Step 2 DECISION-MAKING Step 3
Local health context model Prague, Czech Republic July/2013
Global health context model Prague, Czech Republic July/2013
LARIISA: Dengue Fever Case Study Local health context model Metadata Global health context model
WEB Prototype Structured Data <lat=S 3° 45' 48.6429“>, <lon=W 38° 36' 28.7434“>, <time=17:00h>, <date=03/02/2013>, <body_temp=40°C>, <heart_rate=110 bpm>, <blood_press=140/90>, <loc_add=Av. F, 126-298-Conj. Ceará, Fortaleza – CE>, <loc_weather=25°C>, <symptom=A, B, C>, <sus_id=209968974640021> Internet Health Agent LariisaDatabase Smartphone / Tablet / Desktop Health Managers Dashboard Pacient
5. LARIISA Prototypes - A Bayesian Approach (2013)
LARIISA: Bayesian Approach ProbabilistcMethods (BAYESIAN NETWORK) Data Acquisition (CONTEXT) METADATA DECISION-MAKING
LARIISA: Bayesian Approach Specialist Data (Tables) andRelationship
Screensoftheproposed System ENTRADA DO SISTEMA SALA DE SITUAÇÃO SAÍDA DO SISTEMA Módulo de Decisão Interface Módulo de Decisão A’ Interface do Usuário 1 B’ Módulo de Inferência do LARIISA_Bay C’ Decisão do Especialista: f(%) RB A’ A B B’ Gestor 2 C’ Patient C Agente de Saúde Health Agent Validação do Especialista: A f(%) A ≠ A’ Paciente Paciente % A’ Posto de Saúde A Agente de Saúde Specialist B B’ Gráfico de Epidemias Sensores C’ C Ambulância METADADO 3 Especialista Especialista Pass Through A f(%) A = A’ LARIISA_Bay OUTROS PROVEDORES DE CONTEXTO Regras de Inferência Repositório de Contexto Global Repositório de Contexto Local LARIISA
Bayesian Networks High Risk LowRisk
LARIISA: FunctionalDiagram INFERENCE MODULE SITUATION ROOM IN OUT 1 SpecialistDecision Module Decision Module Interface A’ User Interface Specialist Decision: f(%) LARIISA_BAY InferenceModule B’ RB C’ Manager A’ A 2 B B’ Health Agent C’ C Specialist Validation: A f(%) A ≠ A’ Patient Patient % Health Center Health Agent A’ A EpidemicGraph B B’ Sensors C’ C Ambulance METADATA 3 Specialist Specialist Pass Through A f(%) A = A’ OTHER CONTEXT PROVIDERS LARIISA InferenceRules Global ContextRepository Local ContextRepository
5. LARIISA Prototypes - Caregiving (2014)
LARIISA: CaregiverCase Study KnowledgeRepresentation (ONTOLOGY) Data Acquisition (CONTEXT) METADATA DECISION-MAKING
Scenario for LARIISA ApplicationCAREGIVER – a voluntary or paid person who helps an impaired person to deal with his/her daily activities. 2. Motivation: The Brazilian Digital TV LARIISA can help specialized profissional ... orvoluntarypeople
Data acquisition – DigaSaude CONTEXT Prague, Czech Republic July/2013
Interface for non alphabetized people Prague, Czech Republic July/2013
5. LARIISA Prototypes - CarAciddent (2015)