1 / 22

Multi-view face detection using discriminant features

Multi-view face detection using discriminant features. Computer Vision and Image Understanding, Vol. 105, Issue 2, February 2007. Peng Wang , Qiang Ji 2006. Outline. Introduction Discriminant feature Experiments. 系統流程圖. STAR. Image. RNDA. Gray-scale. Adaboost. Skin Regions.

Download Presentation

Multi-view face detection using discriminant features

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Multi-view face detection using discriminant features Computer Vision and Image Understanding, Vol. 105, Issue 2, February 2007 Peng Wang , Qiang Ji 2006 碩言資工一甲 M97G0217 黃烱育

  2. Outline Introduction Discriminant feature Experiments 碩言資工一甲 M97G0217 黃烱育

  3. 系統流程圖 STAR Image RNDA Gray-scale Adaboost Skin Regions Multi-view face 前處理 face detector 碩言資工一甲 M97G0217 黃烱育

  4. Introduction Multi-view face processinghas recently received more attentions, since morethan 75% faces in real images are non-frontal. 碩言資工一甲 M97G0217 黃烱育

  5. Discriminant analysis FDA(Fisher discriminant analysis) 1933. NDA(Nonparametric discriminant analysis)1990. RNDA(Recursive Nonparametric Discriminant Analysis)2006 碩言資工一甲 M97G0217 黃烱育

  6. Discriminant Analysis Fisher 提出線形判別函數,並應用於花卉分類上。他將花卉之各種特徵 利用線性組合方法,將這些基本上是多變量的數據轉換成單變量。再以這個化成單變量的線性組合數值來判別事物間的差別。 碩言資工一甲 M97G0217 黃烱育

  7. Discriminant Analysiscont. 花辦的長與寬 花萼的長與寬 碩言資工一甲 M97G0217 黃烱育

  8. Discriminant Analysiscont. 碩言資工一甲 M97G0217 黃烱育

  9. Discriminant Analysiscont. 碩言資工一甲 M97G0217 黃烱育

  10. Discriminant Analysiscont. 碩言資工一甲 M97G0217 黃烱育

  11. Discriminant Analysiscont. 碩言資工一甲 M97G0217 黃烱育

  12. Discriminant Analysiscont. 小結: 描先求得兩群體平均向量差的軸,再根據自變數間共變異的型態調整此軸,以求得能最佳區別兩群體的線性組合函數。 碩言資工一甲 M97G0217 黃烱育

  13. Experiments 碩言資工一甲 M97G0217 黃烱育

  14. Experiments cont. 碩言資工一甲 M97G0217 黃烱育

  15. Thank you 碩言資工一甲 M97G0217 黃烱育

  16. 碩言資工一甲 M97G0217 黃烱育

  17. Harr-like features 若圖像是24*24的話就需要180000以上的features 碩言資工一甲 M97G0217 黃烱育

  18. Discriminant Analysis cont. 碩言資工一甲 M97G0217 黃烱育 使得影像中的結構資訊遺失(例如人臉影像會因此被切成許多不連續的片斷) 一維向量的維度為(M×N) × 1 所以在計算within-class matrix 和between-class matrix過程中會產生(M×N) × (M×N)的超高維矩陣

  19. Fukunaga-NDA NNs(Nearest Neighbors) 碩言資工一甲 M97G0217 黃烱育

  20. Experimentscont. 碩言資工一甲 M97G0217 黃烱育

  21. Experiments-半側臉 cont. 碩言資工一甲 M97G0217 黃烱育

  22. Experiments-全側臉 cont. 碩言資工一甲 M97G0217 黃烱育

More Related