220 likes | 370 Views
Identified particle elliptic anisotropy in 200 GeV Au+Au collision at RHIC-PHENIX. Shingo Sakai Univ. of Tsukuba for the PHENIX Collaboration. p y. y. p x. x. Introduction. Momentum space anisotropy of particle emission. Initial spatial anisotropy.
E N D
Identified particle elliptic anisotropy in 200 GeV Au+Au collision at RHIC-PHENIX Shingo Sakai Univ. of Tsukuba for the PHENIX Collaboration
py y px x Introduction Momentum space anisotropy of particle emission Initial spatial anisotropy The azimuthal anisotropy of particle emission is sensitive to the early stages of system evolution
Motivation ・ at low pT (<1.5GeV/c) ・ at pT>2.5GeV/c How about heavier particle ? Measure of deuteron + anti-deuteron in 200 GeV Au+Au collision at RHIC-PHENIX
Coalescence model -Coalescence model- deuteron and anti-deuteron produce the coalescence of the individual nucleons n p Au+Au collision at sqrt(SNN)=200GeV d Quark Matter 2002 Anuj K. Purwar and Rickard du Rietz
Method -Reaction plane method- Measure azimuthal angle of each particle respect to the reaction plane Y Reaction Plane X σ=<cos(2(m-real))> = {<cos(2(A-B))>}1/2 particle emission
PHENIX detector PC3 64 pmts in each BBC PC1 BBC Beam Beam Counter (BBC) ||=3-4 TOF DC Tracking 3 units of rapidity away from the mid-rapidity p,φ DC+PC1+PC3 PID・・・ TOF Less non-flow contribution m2 = p2 {(TOF/L)2 -1} HBT、jet、resonance decay
Reaction plane distribution BBCS [rad] [rad] BBCN 2obs 20 [rad] 2Y0=2Y0obs+DY0 0= (Ancos(2nobs) + Bnsin(2nobs)) An = -2/n*<sin(2nobs)> Bn = 2/n*<cos(2nobs)>
PID Momentum [GeV/C] d π K P mass^2 [(GeV/c^2)^2] mass^2 [(GeV/c^2)^2] Including background
dN/dφ distribution 2.0<p<3.0 dn/dφ d+dbar v 2 dn/dφ of background (normalize N ) dn/dφ of subtracted background b Φ-Ψ
Compare with theory PHENIX Preliminary P(PHENIX preliminary) d-coalescence model d+dbar systematic error assuming
PID v 2 PHENIX Preliminary ・ at low momentum (<1.5GeV/c) pi (*) P.Huovinen, P.F.Kolb, U.W.Heinz, P.V.Ruuskanen and S.A.Voloshin, Phys. Lett. B503, 58 (2001) p deuteron (estimate)
Summary ・deuteron + anti-deuteron (d+dbar)elliptic anisotropy are measured respect to the reaction plane ・ of d+dbar is estimated taking into account background ・ at low momentum (<1.5 GeV/c) ・ Coalescence model & hydro model is comparable within error bar (sys.+stat.)
d+dbar (2.0<p(GeV/c)<3.0) (1.0<p(GeV/c)<2.0) Gaussian+exp fit (3.0<p(GeV/c)<4.0) < selection> Quality 31 || 63 TOF-Track matching cut < 2 σ PC3-Track matching cut < 2 σ TOF E loss > 0.0014Β^(-5/3) |Mass^2|<1.5σ(p)
dN/dφ distribution(1) 1.0<p<2.0 dn/dφ d,dbar v 2 dn/dφ of subtracted background dn/dφ of background (normalize N ) b Φ-Ψ
dN/dφ distribution(2) dn/dφ 3.0<p<4.0 d+dbar v 2 dn/dφ of subtracted background dn/dφ of background (normalize N ) Φ-Ψ b
0-5% 5-10% 10-20% BBC beam Central arm
Resolution Can’t measure Reaction plane resolution Reaction plane sub-event (divide one event)
B2 Quark Matter 2002 Anuj K. Purwar and Rickard du Rietz
PID v 2 PHENIX Preliminary ・ at low momentum (<1.5GeV/c) ・ doesn’t saturate (p<3.0 GeV/c) π+&K+ (PHENIX preliminary) p (PHENIX preliminary) d+dbar Lambda (C. Adler et al. Phys. Rev. Lett. 89, 132301 (2002))
PID v 2 PHENIX Preliminary ・ at low momentum (<1.5GeV/c) ・ doesn’t saturate (p<3.0 GeV/c)