1 / 109

Computer and Robot Vision I

Computer and Robot Vision I. Chapter 10 Image Segmentation Presented by: 陳雲濤 0921192337 r03525056@ntu.edu.tw 指導教授 : 傅楸善 博士. 10.0 關於投影片. Online slide: https://goo.gl/xgYW9X 共同編輯筆記吧 :D. 10.1 Introduction. image segmentation: partition of image into set of non-overlapping regions

kgalvan
Download Presentation

Computer and Robot Vision I

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Computer and Robot Vision I Chapter 10 Image Segmentation Presented by:陳雲濤 0921192337 r03525056@ntu.edu.tw 指導教授: 傅楸善 博士 Digital Camera and Computer Vision Laboratory Department of Computer Science and Information Engineering National Taiwan University, Taipei, Taiwan, R.O.C.

  2. 10.0 關於投影片 • Online slide: https://goo.gl/xgYW9X • 共同編輯筆記吧 :D DC & CV Lab. NTU CSIE

  3. 10.1 Introduction • image segmentation: • partition of image into set of non-overlapping regions • union of segmented regions is the entire image • segmentation purpose: • to decompose image into meaningful parts to application • segmentation based on valleys in gray level histogram into regions DC & CV Lab. NTU CSIE

  4. 10.1 Introduction (cont’) DC & CV Lab. NTU CSIE

  5. DC & CV Lab. NTU CSIE

  6. DC & CV Lab. NTU CSIE

  7. 10.1 Introduction (cont’) • rules for general segmentation procedures • region uniform, homogeneous w.r.t. characteristic e.g. gray level, texture • region interiors simple and without many small holes • adjacent regions with significantly different values on characteristic • boundaries simple not ragged spatially accurate DC & CV Lab. NTU CSIE

  8. 10.1 Introduction (cont’) • Clustering: • process of partitioning set of pattern vectors into clusters • set of points in Euclidean measurement space separated into 3 clusters • In some sense close to one another DC & CV Lab. NTU CSIE

  9. 10.1 Introduction (cont’) DC & CV Lab. NTU CSIE

  10. 10.1 Introduction (cont’) • no full theory of clustering • no full theory of image segmentation • image segmentation techniques: ad hoc, different in emphasis and compromise DC & CV Lab. NTU CSIE

  11. Joke DC & CV Lab. NTU CSIE

  12. 10.2 Measurement-Space-Guided Spatial Clustering • The technique of measurement-space-guided spatial clustering for image segmentation uses the measurement-space-clustering process to define a partition in measurement space. DC & CV Lab. NTU CSIE

  13. 10.2 Measurement-Space-Guided Spatial Clustering (cont’) • histogram mode seeking: • a measurement-space-clustering process • homogeneous objects as clusters in histogram • one pass, the least computation time DC & CV Lab. NTU CSIE

  14. 10.2 Measurement-Space-Guided Spatial Clustering (cont’) • enlarged image of a polished mineral ore section DC & CV Lab. NTU CSIE

  15. 10.2 Measurement-Space-Guided Spatial Clustering (cont’) • 3 nonoverlapping modes: • black holes • Pyrorhotite • pyrite DC & CV Lab. NTU CSIE

  16. 10.2 Measurement-Space-Guided Spatial Clustering (cont’) DC & CV Lab. NTU CSIE

  17. 10.2 Measurement-Space-Guided Spatial Clustering (cont’) • 2 valleys in histogram is a virtually perfect (meaningful) segmentation DC & CV Lab. NTU CSIE

  18. 10.2 Measurement-Space-Guided Spatial Clustering (cont’) • 原圖 • 切割後的結果 DC & CV Lab. NTU CSIE

  19. 10.2 Measurement-Space-Guided Spatial Clustering (cont’) • example image not ideal for measurement-space-clustering image segmentation DC & CV Lab. NTU CSIE

  20. 10.2 Measurement-Space-Guided Spatial Clustering (cont’) • histogram with three modes and two valleys DC & CV Lab. NTU CSIE

  21. 10.2 Measurement-Space-Guided Spatial Clustering (cont’) • Undesirable: many border regions show up as dark segments DC & CV Lab. NTU CSIE

  22. 10.2 比較 DC & CV Lab. NTU CSIE

  23. 10.2 Measurement-Space-Guided Spatial Clustering (cont’) • segmentation into homogeneous regions: not necessarily good solution DC & CV Lab. NTU CSIE

  24. joke DC & CV Lab. NTU CSIE

  25. 10.2 Measurement-Space-Guided Spatial Clustering (cont’) • diagram of an F-15 bulkhead DC & CV Lab. NTU CSIE

  26. 10.2 Measurement-Space-Guided Spatial Clustering (cont’) • image of a section of the F-15 bulkhead DC & CV Lab. NTU CSIE

  27. 10.2 Measurement-Space-Guided Spatial Clustering (cont’) • Histogram of the image DC & CV Lab. NTU CSIE

  28. 10.2 Measurement-Space-Guided Spatial Clustering (cont’) • Five clusters: bad spatial continuation, boundaries noisy and busy DC & CV Lab. NTU CSIE

  29. 10.2 Measurement-Space-Guided Spatial Clustering (cont’) • three clusters: less boundary noise, but much less detail DC & CV Lab. NTU CSIE

  30. 10.2 Measurement-Space-Guided Spatial Clustering (cont’) • recursive histogram-directed spatial clustering DC & CV Lab. NTU CSIE

  31. DC & CV Lab. NTU CSIE

  32. 10.2 Measurement-Space-Guided Spatial Clustering (cont’) • applied to the bulkhead image DC & CV Lab. NTU CSIE

  33. 10.2 Measurement-Space-Guided Spatial Clustering (cont’) • performing morphological opening with 3 x 3 square structuring element DC & CV Lab. NTU CSIE

  34. 10.2 Measurement-Space-Guided Spatial Clustering (cont’) • tiny regions removed, but several long, thin regions lost DC & CV Lab. NTU CSIE

  35. 10.2 Measurement-Space-Guided Spatial Clustering (cont’) • a color image DC & CV Lab. NTU CSIE

  36. 10.2 Measurement-Space-Guided Spatial Clustering (cont’) • recursive histogram-directed spatial clustering using R,G,B bands and other DC & CV Lab. NTU CSIE

  37. joke DC & CV Lab. NTU CSIE

  38. 10.2.1 Thresholding • Kohler denotes the set E(T) of edges detected by a threshold T to be the set of all pairs of neighboring pixels one of whose gray level intensities is less than or equal to T and one of whose gray level intensities is greater than T DC & CV Lab. NTU CSIE

  39. 10.2.1 Thresholding (cont’) • 1. pixels and are neighbors • 2.min max DC & CV Lab. NTU CSIE

  40. 10.2.1 Thresholding (cont’) • The total contrast C(T) of edges detected by threshold T is given by DC & CV Lab. NTU CSIE

  41. 10.2.1 Thresholding (cont’) • The average contrast of all edges detected by threshold T: • The best threshold Tb is determined by the value that maximizes DC & CV Lab. NTU CSIE

  42. 10.2.1 Thresholding (cont’) • Example • T = 50 • [45, 110] • [33, 88] • [15, 65] • [45, 115] • [0, 225] DC & CV Lab. NTU CSIE

  43. 10.2.1 Thresholding (cont’) • Example • T = 50 • [5, 60] • [17, 33] • [35, 15] • [5, 65] • [50, 175] DC & CV Lab. NTU CSIE

  44. 10.2.1 Thresholding (cont’) • Example • T = 50 • [5, 60] • [17, 33] • [35, 15] • [5, 65] • [50, 175] The average contrast of all edges (5+17+15+5+50) / 5 = 18.4 DC & CV Lab. NTU CSIE

  45. 10.2.1 Thresholding (cont’) • Example • T = 50 • [5, 60] • [17, 33] • [35, 15] • [5, 65] • [50, 175] The average contrast of all edges (5+17+15+5+50) / 5 = 18.4 The best threshold Tb is determined by the maximizes DC & CV Lab. NTU CSIE

  46. 10.2.1 Thresholding (cont’) • approach for segmenting white blob against dark background • pixel with small gradient: not likely to be an edge DC & CV Lab. NTU CSIE

  47. 10.2.1 Thresholding (cont’) • if not an edge, then either dark background pixel or bright blob pixel • histogram of small gradient pixels: bimodal DC & CV Lab. NTU CSIE

  48. 10.2.1 Thresholding (cont’) • pixels with small gradients: valley between two modes: threshold point DC & CV Lab. NTU CSIE

  49. 10.2.1 Thresholding (cont’) • FLIR (Forward Looking Infra-Red) image from NATO (North Atlantic Treaty Organization) database DC & CV Lab. NTU CSIE

  50. 10.2.1 Thresholding (cont’) • thresholded at gray level intensity 159 and 190 DC & CV Lab. NTU CSIE

More Related