1 / 146

Computer and Robot Vision I

Computer and Robot Vision I. Chapter 11 Arc Extraction and Segmentation. Presented by: 資工四 劉君猷 b03502040@ntu.edu.tw 授課教授:傅楸善 博士. 11.1 Introduction. Grouping Operation : segmented or labeled image sets or sequences of labeled or border pixel positions.

Download Presentation

Computer and Robot Vision I

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Computer and Robot Vision I Chapter 11 Arc Extraction and Segmentation Presented by: 資工四 劉君猷 b03502040@ntu.edu.tw 授課教授:傅楸善 博士 Digital Camera and Computer Vision Laboratory Department of Computer Science and Information Engineering National Taiwan University, Taipei, Taiwan, R.O.C.

  2. 11.1 Introduction Grouping Operation : • segmented or labeled image sets or sequences of labeled or border pixel positions. • extracting sequences of pixels : pixels which belong to the same curve group together • sequence of pixels segment features DC & CV Lab. CSIE NTU

  3. 11.1 Introduction Labeling • edge detection: label each pixel as edge or not • additional properties: edge direction, gradient magnitude, edge contrast…. Grouping • grouping operation: edge pixels participating in the same region boundary are grouped together into a sequence. • boundary sequence simple pieces analytic descriptions shape-matching DC & CV Lab. CSIE NTU

  4. DC & CV Lab. CSIE NTU

  5. 11.2 Extracting Boundary Pixels from a Segmented Image • Regions have been determined by segmentation or connected components boundary of each region can be extracted • Boundary extraction for small-sized images: • scan through the image  first border of each region • first border of each region  follow the border of the connected component around in a clockwise direction until reach itself DC & CV Lab. CSIE NTU

  6. 11.2 Extracting Boundary Pixels from a Segmented Image • Boundary extraction for small-sized images:  memory problems  border-tracking algorithm : border • Border-tracking algorithm : • Input: symbolic image • Output: a clockwise-ordered list of the coordinates of its border pixels • In one left-right, top-bottom scan through the image • During execution, there are 3 sets of regions: current, past, future DC & CV Lab. CSIE NTU

  7. DC & CV Lab. CSIE NTU

  8. 11.2.2 Border-Tracking Algorithm Current region: 2 Future region: 1 DC & CV Lab. CSIE NTU

  9. 11.2.2 Border-Tracking Algorithm Past region: 1 Current region: 2 DC & CV Lab. CSIE NTU

  10. DC & CV Lab. CSIE NTU

  11. DC & CV Lab. CSIE NTU

  12. 11.2.2 Border-Tracking Algorithm DC & CV Lab. CSIE NTU

  13. 11.2.2 Border-Tracking Algorithm DC & CV Lab. CSIE NTU

  14. 11.2.2 Border-Tracking Algorithm DC & CV Lab. CSIE NTU

  15. 11.2.2 Border-Tracking Algorithm DC & CV Lab. CSIE NTU

  16. 11.2.2 Border-Tracking Algorithm (3,3) NEIGHB (3,2),(3,4),(4,3) DC & CV Lab. CSIE NTU

  17. 11.2.2 Border-Tracking Algorithm DC & CV Lab. CSIE NTU

  18. 11.2.2 Border-Tracking Algorithm DC & CV Lab. CSIE NTU

  19. 11.2.2 Border-Tracking Algorithm DC & CV Lab. CSIE NTU

  20. 11.2.2 Border-Tracking Algorithm (4,2) NEIGHB (3,2),(4,3),(5,2) DC & CV Lab. CSIE NTU

  21. 11.2.2 Border-Tracking Algorithm DC & CV Lab. CSIE NTU

  22. 11.2.2 Border-Tracking Algorithm …………………………… DC & CV Lab. CSIE NTU

  23. 11.2.2 Border-Tracking Algorithm DC & CV Lab. CSIE NTU

  24. 11.2.2 Border-Tracking Algorithm • CHAINSET (1)(3,2)(3,3)(3,4)(4,4)(5,4) (1)(4,2)(5,2)(5,3) (2)(2,5)(2,6)(3,6)(4,6)(5,6)(6,6) (2)(3,5)(4,5)(5,5)(6,5) • CHAINSET (1)(3,2)(3,3)(3,4)(4,4)(5,4)(5,3)(5,2)(4,2) (2)(2,5)(2,6)(3,6)(4,6)(5,6)(6,6)(6,5)(5,5) (4,5)(3,5) DC & CV Lab. CSIE NTU

  25. 11.2.2 Border-Tracking Algorithm DC & CV Lab. CSIE NTU

  26. DC & CV Lab. CSIE NTU

  27. 11.3 Linking One-Pixel-Wide Edges or Lines • Border tracking: each border bounded a closed region  NO any point would be split into two or more segments. • Tracking edge (line) segments: more complex  not necessary for edge pixel to bound closed region segments consist of connected edge pixels that go from endpoint, corner, or junction to endpoint, corner, or junction. DC & CV Lab. CSIE NTU

  28. 11.3 Linking One-Pixel-Wide Edges or Lines *INLIST, OUTLIST DC & CV Lab. CSIE NTU

  29. 11.3 Linking One-Pixel-Wide Edges or Lines • pixeltype() determines a pixel point an isolated point / the starting point of an new segment / an interior pixel of an old segment / an ending point of an old segment / a junction / a corner • Instead of past, current, future regions, there are past, current, future segments. DC & CV Lab. CSIE NTU

  30. DC & CV Lab. CSIE NTU

  31. DC & CV Lab. CSIE NTU

  32. 11.3 Linking One-Pixel-Wide Edges or Lines DC & CV Lab. CSIE NTU

  33. 11.3 Linking One-Pixel-Wide Edges or Lines DC & CV Lab. CSIE NTU

  34. 11.3 Linking One-Pixel-Wide Edges or Lines DC & CV Lab. CSIE NTU

  35. 11.3 Linking One-Pixel-Wide Edges or Lines DC & CV Lab. CSIE NTU

  36. 11.3 Linking One-Pixel-Wide Edges or Lines DC & CV Lab. CSIE NTU

  37. 11.3 Linking One-Pixel-Wide Edges or Lines DC & CV Lab. CSIE NTU

  38. 11.3 Linking One-Pixel-Wide Edges or Lines DC & CV Lab. CSIE NTU

  39. 11.3 Linking One-Pixel-Wide Edges or Lines DC & CV Lab. CSIE NTU

  40. 11.3 Linking One-Pixel-Wide Edges or Lines DC & CV Lab. CSIE NTU

  41. 11.3 Linking One-Pixel-Wide Edges or Lines DC & CV Lab. CSIE NTU

  42. 11.3 Linking One-Pixel-Wide Edges or Lines DC & CV Lab. CSIE NTU

  43. 11.3 Linking One-Pixel-Wide Edges or Lines DC & CV Lab. CSIE NTU

  44. 11.3 Linking One-Pixel-Wide Edges or Lines DC & CV Lab. CSIE NTU

  45. 11.3 Linking One-Pixel-Wide Edges or Lines DC & CV Lab. CSIE NTU

  46. 11.3 Linking One-Pixel-Wide Edges or Lines DC & CV Lab. CSIE NTU

  47. DC & CV Lab. CSIE NTU

  48. 11.4 Edge and Line Linking Using Directional Information • edge_track : no directional information • In this section, Assume each pixel is marked to indicate whether it is an edge (line), and if so, the angular direction of the edge (line) is associated with it. DC & CV Lab. CSIE NTU

  49. 11.4 Edge and Line Linking Using Directional Information • Edge (line) linking: pixels that have similar enough direction  form connected chains and be identified as an arc segment (good fit to a simple curvelike line) DC & CV Lab. CSIE NTU

  50. 11.4 Edge and Line Linking Using Directional Information • If an encountered label pixel has no previously encountered labeled neighbors: initialize the scatter of group , : priori variance : # of pixels DC & CV Lab. CSIE NTU

More Related