400 likes | 451 Views
Understand the impact of antimicrobial resistance due to antibiotic misuse, learn about classification, pharmacology, and major pathogenic bacteria, prevention strategies, and the consequences of resistance.
E N D
Introduction to Antibacterial Therapy Clinically Relevant Microbiology and Pharmacology Edward L. Goodman, MD July 21, 2003
Rationale • Antibiotic use (appropriate or not) leads to microbial resistance • Resistance results in increased morbidity, mortality, and cost of healthcare • Appropriate antimicrobial stewardship will prevent or slow the emergence of resistance among organisms (Clinical Infectious Diseases 1997; 25:584-99.) • Antibiotics are used as “drugs of fear” • (Kunin CM Annals 1973;79:555)
Antibiotic Misuse • Surveys reveal that: • 25 - 33% of hospitalized patients receive antibiotics (Arch Intern Med 1997;157:1689-1694) • 22 - 65% of antibiotic use in hospitalized patients is inappropriate (Infection Control 1985;6:226-230)
Consequences of Misuse of Antibiotics • Contagious RESISTANCE • No equivalent downside to overuse of endoscopy, calcium channel blockers, etc. • Morbidity - drug toxicity • Mortality • Cost
Outline • Basic Clinical Bacteriology • Categories of Antibiotics • Pharmacology of Antibiotics
Goodman’s Scheme for the Major Classes of Bacterial Pathogens • Gram Positive Cocci • Gram Negative Rods • Fastidious GNR • Anaerobes
Gram stain: clusters Catalase pos = Staph Coag pos = S aureus Coag neg = variety of species Chains and pairs Catalase neg = streptococci Classify by hemolysis Type by specific CHO Gram Positive Cocci
Staphylococcus aureus • >95% produce penicillinase (beta lactamase) = penicillin resistant • At PHD ~50% of SA are hetero (methicillin) resistant = MRSA • Glycopeptide (vancomycin) intermediate (GISA) • MIC 8-16 • Eight nationwide (one at PHD) • VRSA reported July 5, 2002 MMWR • MIC >128
Methicillin Methicillin-resistant S. aureus (MRSA) [1970s] Vancomycin [1997] [1990s] [ 2002 ] Vancomycin Vancomycin-resistant Vancomycin- resistant S. aureus intermediate- enterococci (VRE) resistant S. aureus (VISA) Evolution of Drug Resistance in S. aureus Penicillin Penicillin-resistant S. aureus [1950s] S. aureus
Coagulase Negative Staph • Many species – S. epidermidis most common • Mostly methicillin resistant (65%) • Often contaminants or colonizers – use specific criteria to distinguish • Major cause of overuse of vancomycin
Nosocomial Bloodstream Isolates All gram-negative (21%) Other (11%) SCOPE Project Viridans streptococci (1%) Coagulase-negative staphylococci (32%) Candida (8%) Staphylococci aureus (16%) Enterococci (11%) Clin Infect Dis 1999;29:239-244
Streptococci • Beta hemolysis: Group A,B,C etc. • Invasive – mimic staph in virulence • S. pyogenes (Group A) • Pharyngitis, • Soft tissue • Non suppurative sequellae: ARF, AGN
Beta strept - continued • S. agalactiae (Group B) • Peripartum/Neonatal • Diabetic foot • Bacteremia/endocarditis/metastatic foci • Group D (non enterococcal) = S. bovis • Associated with carcinoma of colon
Viridans Streptococci • Many species • Streptococcus intermedius group • Liver abscess • Endocarditis • GI or pharyngeal flora • Most other are mouth flora – cause IE
Enterococci • Formerly considered Group D Streptococci now a separate genus • Bacteremia/Endocarditis • Bacteriuria • Part of mixed abdominal/pelvic infections • Intrinsically resistant to cephalosporins • No bactericidal single agent
Fermentors Oxidase negative Facultative anaerobes Enteric flora Numerous genera Escherischia Enterobacter Serratia, etc Non-fermentors Oxidase positive Pure aerobes Pseudomonas and Acinetobacter Nosocomial Opportunistic Inherently resistant Gram Negative Rods
Fastidious Gram Negative Rods • Neisseria, Hemophilus, Moraxella, HACEK • Require CO2 for growth • Neisseria must be plated at bedside • Chocolate agar with CO2 • Ligase chain reaction has reduced number of cultures for N. gonorrhea
Anaerobes • Gram negative rods • Bacteroides • Fusobacteria • Gram positive rods • Clostridia • Proprionobacteria • Gram positive cocci • Peptostreptococci and peptococci
Anaerobic Gram Negative Rods • Produce beta lactamase • Endogenous flora • Part of mixed infections • Confer foul odor • Heterogeneous morphology • Fastidious
Antibiotic Classificationaccording to Goodman • Narrow Spectrum • Active against only one of the four classes • Broad Spectrum • Active against more than one of the classes • Boutique • Active against a select number within a class
Narrow Spectrum • Active mostly against only one of the classes of bacteria • gram positive: glycopeptides, linezolid • aerobic gram negative: aminoglycosides, aztreonam • anaerobes: metronidazole
Broad Spectrum • Active against more than one class • GPC and anaerobes: clindamycin • GPC and GNR: cephalosporins, penicillins, T/S, newer FQ • GPC, GNR and anaerobes: ureidopenicillins ± BLI, carbapenems • GPC and fastidious: macrolides
Boutique Antibiotics • Just like the Mall • specialty stores • specialty drugs • Often like the Mall – stores in search of business; drugs in search of diseases • Synercid – for VRE faecium, not faecalis, MRSA • Linezolid – VRE, MRSA • ID consult needed
Pharmacodynamics • MIC=lowest concentration to inhibit growth • MBC=the lowest concentration to kill • Peak=highest serum level after a dose • AUC=area under the concentration time curve • PAE=persistent suppression of growth following exposure to antimicrobial
Parameters of antibacterial efficacy • Time above MIC - beta lactams, macrolides, clindamycin, glycopeptides • 24 hour AUC/MIC - aminoglycosides, fluoroquinolones, azalides, tetracyclines, glycopeptides, quinupristin/dalfopristin • Peak/MIC - aminoglycosides, fluoroquinolones
Time over MIC • Should exceed MIC for at least 50% of dose interval • Higher doses may allow adequate time over MIC • For most beta lactams, optimal time over MIC can be achieved by continuous infusion (except unstable drugs such as imipenem, ampicillin)
Higher Serum/tissue levels are associated with faster killing • Aminoglycosides • Peak/MIC ratio of >10-12 optimal • Achieved by “Once Daily Dosing” • PAE helps • Fluoroquinolones • 10-12 ratio achieved for enteric GNR • PAE helps • not achieved forPseudomonas nor Streptococcus pneumoniae
AUC/MIC = AUIC • For Streptococcus pneumoniae, FQ should have AUIC >= 30 • For gram negative rods where Peak/MIC ratio of 10-12 not possible, then AUIC should >= 125.
Antibiotic Use and Resistance • -Strong epidemiological evidence that antibiotic use in humans and animals associated with increasing resistance • -Subtherapeutic dosing encourages resistant mutants to emerge; conversely, rapid bactericidal activity discourages • -Hospital antibiotic control programs have been demonstrated to reduce resistance
Further Activities of CAMP • Decrease inappropriate fluoroquinolone use • Staff education • Restricted reporting • Decrease inappropriate sputum cultures • Staff education • Laboratory disclaimer • Decrease inappropriate vancomycin levels • Education about unnecessary peak levels
Further Activities of CAMP • Monitor surgical site infections and intervene as necessary • Improved timing and administration of pre-op antibiotics • clipping not shaving • nasal decolonization • changing pathogens (MRSA, gram- rods) • Automated protocol-driven antibiotic prescribing • Computerized physician order entry
Antibiotic Armageddon “There is only a thin red line of ID practitioners who have dedicated themselves to rational therapy and control of hospital infections” Kunin CID 1997;25:240
Historic overview on treatment of infections • 2000 BC: Eat this root • 1000 AD: Say this prayer • 1800’s: Take this potion • 1940’s: Take penicillin, it is a miracle drug • 1980’s: Take this new antibiotic, it is better • ?2003 AD: Eat this root