230 likes | 342 Views
Microfluidics for Gene Fabrication. Peter Carr & David Kong MIT Media Laboratory. single genes*. minimal life. 10 2. 10 3. 10 4. 10 5. 10 6. 10 7. genetic circuits. genome rewrite. Uses for DNA On-Demand. base pairs. Step1. >300 changes TAG stops become TAA stops
E N D
Microfluidics for Gene Fabrication Peter Carr & David Kong MIT Media Laboratory
single genes* minimal life 102 103 104 105 106 107 genetic circuits genome rewrite Uses for DNA On-Demand base pairs
Step1. >300 changes TAG stops become TAA stops leaves one codon free E. Coli MG1655 4.6 MB RecodingE.coli: rE.coli Step2. >4000 changes remove rare Arg coding free two more codons Step 3. >70,000 changes swap Leu and Ser codons orthogonal genetic codes! Current “price tag” >$3 million per genome (and we want several of these)
Trends in de novo DNA synthesis Carlson, R. (2003) The Pace and Proliferation of Biological Technologies
25 nt Primers: t1 = b16 = 25 nt Construction oligos: b2 t15 = 48 nt total gene: = 390 bp 25 nt t1 t3 t5 CAGGTAATTCCATATGAACATCCGTCAGTCTGGTAAATACTACGAGTACAAAACTCTGGAGATCCTGGAAAAG CAAAGCGCTGCGTATCCCGGTTTCTGGTACCGGCAAACAGGCGCTGCC CCATTAAGGTATACTTGTAGGCAGTCAGACCATTTATGATGCTCATGTCTAGGACCTTTTCTTACCAAAGTTTCGCGACGCATAGGG CGTTTGTCCGCGACGG b2 b4 t7 t9 CGACCAAAAACAACACCATCTACCCTATTGAAGTTAAATCTACCTCTA GACGTTGTTACCGTTCGTAATTTCCAGATCGAAAAACTGTTCAAATTGCGAAATCTTCAACTTCTGTGACCTGGACTAGCGCTGGTTTTTGTTGTGGTAGA GGGATAACTTCAATTTAGATGGAGATTTCTGCAACAATGGCAAGCATT GGTCTAGCTTTTTGACAAGTTTAAGACGCTTTAGAAGTTGAAGACACT b6 b8 b10 t11 t13 t15 ATGCCACCCGCTGGTAACCGTTTACT CAAGAAATACAAAATCGTTATCGTTTATGAACTGTCTCAGGACGTTCG CCAAAGAAAAAATCAAGTTCAAGTACGGCATCAACTCCTAACTCGAGC GGCGACCATTGGCAAATGATGTTCTTTATGTTTTAGCAATAGCAAATACTTGACAGAGTCCTGCAAGCGTGGTTTCTTTTTTAGTTCAAGTT CGTAGTTGAGGATTGAGCTCGCCTG b12 b14 b16 SIRV-1: hjc gene parse CAGGTAATTCCATATGAACATCCGTCAGTCTGGTAAATACTACGAGTACAAAACTCTGGAGATCCTGGAAAAGAATGGTTTCAAAGCGCTGCGTATCCCGGTTTCTGGTACCGGCAAACAGGCGCTGCC GTCCATTAAGGTATACTTGTAGGCAGTCAGACCATTTATGATGCTCATGTTTTGAGACCTCTAGGACCTTTTCTTACCAAAGTTTCGCGACGCATAGGGCCAAAGACCATGGCCGTTTGTCCGCGACGG GGACCTGATCGCGACCAAAAACAACACCATCTACCCTATTGAAGTTAAATCTACCTCTAAAGACGTTGTTACCGTTCGTAATTTCCAGATCGAAAAACTGTTCAAATTCTGCGCGAAATCTTCAACTTCTGTGA CCTGGACTAGCGCTGGTTTTTGTTGTGGTAGATGGGATAACTTCAATTTAGATGGAGATTTCTGCAACAATGGCAAGCATTAAAGGTCTAGCTTTTTGACAAGTTTAAGACGCTTTAGAAGTTGAAGACACTCT ATGCCACCCGCTGGTAACCGTTTACTACAAGAAATACAAAATCGTTATCGTTTATGAACTGTCTCAGGACGTTCGCACCAAAGAAAAAATCAAGTTCAAGTACGGCATCAACTCCTAACTCGAGCGGAC TACGGTGGGCGACCATTGGCAAATGATGTTCTTTATGTTTTAGCAATAGCAAATACTTGACAGAGTCCTGCAAGCGTGGTTTCTTTTTTAGTTCAAGTTCATGCCGTAGTTGAGGATTGAGCTCGCCTG
50 bp 73 bp 108 bp 390 bp SIRV-1: hjc one-step PCA t1 t3 t5 t7 t9 t11 t13 t15 b2 b4 b6 b8 b10 b12 b14 b16
(keep) A A A A G C C C C C T T T T T T G G G G (edit) (remove) T T T T T G G G G G A A A A A C A C C C Error Correction for DNA >109 copies in solution probability of correlated errors is low iteration (with strand re-partnering) makes more robust
bind MutS remove MutS + mismatch (error-free DNA) DNA Error Correction Protocols Hybridization-selection Mismatch Binding/Removal Mismatch Cleavage Tian et al. Nature 432 (2004) Carr et al. NAR 32 (2004) Smith & Modrich PNAS 94 (1997)
inkjet-printed microarrays (e.g. Agilent) maskless array synthesizer (e.g. Nimblegen) >105 oligos per microarray >5 megabases of DNA information >1000x reduction in oligonucleotide costs = = Tian & Church (2004): ~600 oligos 21 genes 15 kb construct High Density Oligonucleotide Microarraysa massive feedstock of DNA building blocks
Making it Fast & Cheap: Challenges • Harnessing the full potential of oligo microarrays • minute amounts of material: amplification? • assembly: erratic behaviors of increasingly complex mixes • Minimizing expensive reagents (polymerases, error correction) • High throughput parallel sample handling • Process integration
oligo microarray synthesis DNA error correction express/assay clone sequence/QC assemble DNA constructs user designs DNA larger scale assembly assemble DNA constructs DATA (MOLECULES) DATA Microfluidic Gene Synthesis:Integration Road Map
Fabrication PDMS1 PDMS2 PDMS3 CYTOP, Paralyne, Parallel microfluidic gene synthesis Four parallel 500-nL reactors
Parallel microfluidic gene synthesis Kong et al. Nucleic Acids Research, 2007
1 in 600 1 in 1400 1 in 10,00 Parallel microfluidic gene synthesis Sequencing results Carr et al. Nucleic Acids Research, 2004 -verified identity of each gene by sequencing -12.5% of clones were error-free in agreement with theoretical predictions Kong et al. Nucleic Acids Research, 2007
oligo microarray synthesis oligo microarray synthesis DNA error correction express/assay clone sequence/QC assemble DNA constructs user designs DNA larger scale assembly assemble DNA constructs DATA (MOLECULES) DATA Microfluidic Gene Synthesis:Integration Road Map
Integrated Microarray-Microfluidics -Perform synthesis without pre-assembly amplification -Enables increased utilization of high-density DNA microarrays by: -reducing pool complexity -limiting undesired oligo interactions -maintaining reagent concentrations at desired levels
oligo microarray synthesis DNA error correction express/assay clone sequence/QC larger scale assembly assemble DNA constructs user designs DNA larger scale assembly assemble DNA constructs DATA (MOLECULES) DATA Microfluidic Gene Synthesis:Integration Road Map
300 nL reactors • On-chip mixing of synthesized fragments A, B, with a “rejuvenating mixture” of dNTPs, polymerase, and amplifying primers • Fragment A, B, and E sample collection (real time) Hierarchical gene synthesis E
oligo microarray synthesis DNA error correction express/assay express/assay clone sequence/QC assemble DNA constructs user designs DNA larger scale assembly assemble DNA constructs DATA (MOLECULES) DATA Microfluidic Gene Synthesis:Integration Road Map
45 nL gene synthesis reactors, 12 nL protein synthesis reactors Integrated gene and protein synthesis oligos gene protein oligos gene protein oligos gene protein Fluorescence from GFP expressed in a PDMS microfluidic device Fluorescence from expressed synthetic EGFP
Thank You Lu Chen Kelly Chang Byron Hsu Dr. Shuguang Zhang Prof. George Church Prof. Franco Cerrina Prof. Joseph Jacobson Funding: MIT Media Lab Center for Bits and Atoms (NSF)