1 / 20

Økonometri 1

Økonometri 1. Flere emner i den multiple regressionsmodel 13. marts 2003. Dagens program:. Opsamling af asymptotiske resultater fra sidst (afsnit 5.3.) Flere emner i den multiple lineære regressionsmodel (kap. 6): Skalering: Valg af måleenheder for variablerne (LHS, RHS)

kim
Download Presentation

Økonometri 1

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Økonometri 1 Flere emner i den multiple regressionsmodel 13. marts 2003 Økonometri 1: Flere emner i den multiple regressionsmodel

  2. Dagens program: • Opsamling af asymptotiske resultater fra sidst (afsnit 5.3.) • Flere emner i den multiple lineære regressionsmodel (kap. 6): • Skalering: Valg af måleenheder for variablerne (LHS, RHS) • Mere om funktionel form: Log-transformation, kvadratiske led, interaktionsled. • Goodness-of-fit: Hvad kan det (og hvad kan det ikke) bruges til? • Prediktioner fra MLR modellen. • Hovedsagen i kapitlet: Fortolkningen af modellen for en række meget anvendte specifikationer. Økonometri 1: Flere emner i den multiple regressionsmodel

  3. Asymptotisk efficiens af OLS estimatoren • Under Gauss-Markov antagelserne er OLS asymptotisk efficient. • Teorem 5.3: Under Gauss-Markov antagelserne har OLS den mindste asymptotiske varians blandt estimatorer, der løser ligningen • Simpel regression: Tavlegennemgang. Økonometri 1: Flere emner i den multiple regressionsmodel

  4. Inferens i den multiple regressionsmodel: Opsamling • Resultater om OLS med endeligt antal observationer: Normalitetsantagelse eksakte t- og F-test. • Asymptotiske resultater for OLS: • Konsistens under MLR.1-4. • Asymptotisk normalfordelt under MLR.1-5: • t- og F-test begrundes approximativt i endeligt datasæt uden at antage normalfordelte fejlled. • Andre typer af test: Lagrange multiplikator testet • Asymptotisk efficiens af OLS under MLR.1-5. Økonometri 1: Flere emner i den multiple regressionsmodel

  5. Valg af enheder: Skalering af variablerne • Skaleringen af variablerne er ofte arbitrær: Ex. Afstand målt meter vs. Kilometer (1000 m) vs. Amerikanske miles (1609 m) vs. Svenske mil (10000 m). • Løn/uddannelse/erfaring eksemplet fra F3: Antag: • Se på skalering af RHS- og LHS-variabler Økonometri 1: Flere emner i den multiple regressionsmodel

  6. Valg af enheder: Skalering af variablerne: RHS • Afkast af en måneds ekstra uddannelse • Afkast af et års ekstra erfaring • Ønsker begge dele i pro anno termer: Definerer uddannelse i år: Indsæt i model: • I princippet: Frit valg af skala for de enkelte • Koef.estimat og std. fejl reskaleres. Alt andet uændret (inkl. t-værdierne). • Standardiserede variabler: Fratrukket middelværdi og skaleret med standardafvigelse: Sammenligning af koefficienter, hvor skalaen er vanskeligt fortolkelig. Økonometri 1: Flere emner i den multiple regressionsmodel

  7. Valg af enheder: Skalering af variablerne: LHS • Tilfælde 1: Almindelig model uden log-transformation Definer • Koef.estimat og std. fejl reskaleres ligesom SSR, SST, SSE og • og t-værdierne uændrede. Økonometri 1: Flere emner i den multiple regressionsmodel

  8. Valg af enheder: Skalering af variablerne: LHS (fortsat) • Tilfælde 2: Model med log-transformation af Definer • Intet ændret undtagen koef.estimat og std. fejl for konstantleddet, . • Gælder også ved skalering af log-transformeret Økonometri 1: Flere emner i den multiple regressionsmodel

  9. Funktionel form • MLR forudsætter, at modellen er lineær i parametrene. • Men ikke i variablerne. • Funktionel form: Fortolkningsmæssige konsekvenser! • Tre vigtige tilfælde: • Log-transformation • Kvadratiske led • Interaktionsled • Brugen af log-transformation: Absolutte ændringer i log-transformeret variabel svarer til relative ændringer i den originale variabel. Økonometri 1: Flere emner i den multiple regressionsmodel

  10. Funktionel form: Log-transformation • Økonomisk teori ofte udtrykt i afkast-størrelser (% pr. år): • BNP vækstrate: Relativ tilvækst i realt BNP fluktuerer nogenlunde konstant omkring et niveau på ca. 2 % pr. år over længere perioder: Tidsrækkemodeller • Egenkapitalforrentning (”return on equity”, Ex. 2.3, 2.6, 2.8): • Store virksomheder har (gennemgående) store overskud (målt i kr.), små virksomheder har (gennemgående) små overskud. • Mere relevant: Overskud i forhold til størrelsen af den indskudte kapital, en relativ størrelse. • Variansen på en størrelse kan afhænge af niveauet: Relativ varians er mere stabil (RoE ex). Økonometri 1: Flere emner i den multiple regressionsmodel

  11. Funktionel form: Log-transformation (fortsat) Økonometri 1: Flere emner i den multiple regressionsmodel

  12. Funktionel form: Kvadratiske led • Aftagende eller stigende marginaludbytte/-effekt: Fx kvadratisk Engelkurve: Andelen til mad aftagende, men ”flader ud”. • Multipel regressionsmodel: Men ”alt andet lige” betragtning med omtanke. • Effekt af ændring af afhænger af udgangsværdien af • Evalueres ved ”relevant” værdi, fx . Extrapolation…! Økonometri 1: Flere emner i den multiple regressionsmodel

  13. Funktionel form: Interaktionsled • Marginal effekt af at ændre værdien af en forklarende variabel, , afhænger af værdien af fx : Fx kan afkastet af uddannelse variere med alder • Igen: Multipel regressionsmodel: Men ”alt andet lige” betragtning med omtanke. • Evalueringspunktet vælges med omhu. Økonometri 1: Flere emner i den multiple regressionsmodel

  14. Goodness-of-fit • er et mål for modellens forklaringsgrad. • Øges når der tilføjes variabler til modellen (med mindre de er perfekt kollineære med eksisterende regressorer). • Uegnet til modelvalg. Høj er ikke nødvendig for en brugbar model. • Korrigeret , betegnet , ”straffer” for at selvom større modeller tilpasser data bedre, sker dette ved hjælp af flere forklarende variabler. • Tæller og nævner korrigeres for frihedsgrader >< Økonometri 1: Flere emner i den multiple regressionsmodel

  15. Goodness-of-fit (fortsat) • Hvis en variabel tilføjes til modellen vil øges hvis og kun hvis variablen har en t-værdi, der (numerisk) overstiger 1. • Svarer til at lave et to-sidet signifikanstest med et signifikansniveau over 30 %! • bruges i nogle tilfælde til at sammenligne ”ikke-nestede” modeller, hvor den ene model er ikke et specialtilfælde af den anden. • Men begrænsninger: Samme LHS variabel. Økonometri 1: Flere emner i den multiple regressionsmodel

  16. Goodness-of-fit (fortsat) • Hvor mange variabler skal med i modellen? • Overvej hvilke variabler der fortolkningsmæssigt giver mening. • Ofte flere praktiske mål for samme teoretiske størrelse: Problematisk at inkludere flere mål og så lave ”alt-andet-lige” betragtning. • Høj korrelation mellem forklarende variabler giver multikollinearitetsproblem: Svært at skelne effekterne af de enkelte variabler fra hinanden. • Har man mulighed for at tilføje variabler, der er ukorrelerede med de allerede inkluderede, vil det entydigt nedbringe residualvariansen og give mere præcise estimater. Økonometri 1: Flere emner i den multiple regressionsmodel

  17. Prediktioner (forudsigelser) • Punktprediktion fra MLR: Tilpassede værdi: • For givne værdier af et estimat af (MLR.3): • er en estimator af den sande (men ukendte) middelværdi. For givne værdier af har prediktionen en standardfejl, der er afledt af standardfejlene på OLS estimaterne . • Kan vises at standardfejlen på prediktionen er mindst når sættes lig deres gennemsnit. Økonometri 1: Flere emner i den multiple regressionsmodel

  18. Prediktioner (forudsigelser) (fortsat) • Har set på variansen på selve prediktionen af den gennemsnitlige værdi af y, givet værdier af • Ofte af interesse at konstruere et konfidensinterval for en tænkt enhed (husholdning, virksomhed, …) med nogle givne karakteristika: • Må også tage højde for variansen af fejlleddet, • Prediktionsfejlen er: • OLS er middelret og så Økonometri 1: Flere emner i den multiple regressionsmodel

  19. Prediktioner (forudsigelser) (fortsat) • Prediktionsfejlsvariansen: ukorreleret med så variansen splitter op i to komponenter: • Vil ofte være domineret af leddet (især for store n) • Prediktion af afledte variabler: Fx Y når vi modellerer y=log(Y). Husk at generelt med mindre f( ) er lineær. • For log-transformation: Økonometri 1: Flere emner i den multiple regressionsmodel

  20. Næste gang: • Mette Ejrnæs om Kap. 7: Kvalitativ information regresssionsmodellen: Dummyvariabler Økonometri 1: Flere emner i den multiple regressionsmodel

More Related