1 / 47

LISREL matrices, LISREL programming

LISREL matrices, LISREL programming. ICPSR General Structural Equations Week 2 Class #4. Class Exercise. (from previous class notes:). Class exercise. BETA 2 x 2 0 BE(1,2) BE(2,1) 0 PHI 2 X 2 PHI(1,1) 0 PHI(2,2) GAMMA 2 X 2 GA(1,1) 0 0 GA(2,2). PSI 2 x 2 PS(1,1)

kita
Download Presentation

LISREL matrices, LISREL programming

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. LISREL matrices, LISREL programming ICPSR General Structural Equations Week 2 Class #4

  2. Class Exercise (from previous class notes:)

  3. Class exercise BETA 2 x 2 0 BE(1,2) BE(2,1) 0 PHI 2 X 2 PHI(1,1) 0 PHI(2,2) GAMMA 2 X 2 GA(1,1) 0 0 GA(2,2) PSI 2 x 2 PS(1,1) PS(2,1) PS(2,2)

  4. LAMBDA-X 1 0 LX(2,1) 0 LX(3,1) LX(3,2) 0 1 0 LX(5,2) LAMBDA-Y 1 0 LY(2,1) 0 LY(3,1) 0 0 1 0 LY(5,2) 0 LY(6,2)

  5. MO NY=6 NX=5 NK=2 NE=2 LX=FU,FI LY=FU,FI C PH=SY BE=FU,FI GA=FU,FI TD=SY TE=SY PS=SY,FR VA 1.0 LX 1 1 LX 4 2 LY 1 1 LY 4 2 FR LX 2 1 LX 3 1 LX 3 2 LX 5 2 LY 2 1 LY 3 1 LY 5 2 LY 6 2 FR GA 1 1 GA 2 2 FR BE 2 1 BE 1 2

  6. Exercise 2:A (PANEL) MODEL WITH CORRELATED ERRORS

  7. Exercise 2:A (PANEL) MODEL WITH CORRELATED ERRORS Beta 2 x 2 0 0 BE(2,1) 0 PSI 2 x 2 PS(1,1) 0 PS(2,2) Not shown: zeta1 Theta-eps TE(1,1) 0 TE(2,2) 0 0 TE(3,3) TE(4,1) 0 0 TE(4,4) 0 TE(5,2) 0 0 TE(5,5) 0 0 0 0 0 TE(6,6)

  8. Exercise 2:A (PANEL) MODEL WITH CORRELATED ERRORS MO NY=6 NE=2 LY=FU,FI PS=SY TE=SY BE=FU,FI VA 1.0 LY 1 1 LY 4 2 FR LY 2 1 LY 3 1 LY 5 2 LY 6 2 FR BE 2 1 FR TE 4 1 TE 5 2 Notes: PS=SY specification  free diagonals (PS(1,1) and PS(2,2), fixed off-diagonals [ps(2,1)=0 in this model].

  9. Exercise 3

  10. Exercise 3 BETA 2 X 2 0 0 BE(2,1) 0 LAMBDA-Y 1 0 LY(2,1) 0 LY(3,1) LY(3,2) 0 1 0 LY(5,2) Gamma 2 x 1 GA(1,1) 0 LAMBDA-X 1 X 1 1

  11. Exercise 3 MO NX=1 NY=5 NK=1 NE=2 LX=ID LY=FU,FI C PS=SY PH=SY TD=ZE TE=SY BE=FU,FI GA=FU,FI VA 1.0 LY 1 1 LY 4 2 FR LY 2 1 LY 3 1 LY 3 2 LY 5 2 FR GA 1 1 BE 2 1

  12. Exercise 4 This is a non-standard model.

  13. Exercise 4 This parameter cannot be estimated in LISREL; must re-express the model (to an equivalent that CAN be estimated)

  14. RE-EXPRESSED MODEL LAMBDA – Y 1 0 LY(2,1) 0 LY(3,1) 0 LY(4,1) 0 0 1 BETA 0 BE(1,2) 0 0

  15. RE-EXPRESSED MODEL Now X1,X2 MO NY=5 NX=2 NK=1 NE=2 LY=FU,FI LX=FU,FR C GA=FU,FR PS=SY PH=SY TD=SY TE=SY VA 1.0 LX 1 1 LY 1 1 LY 5 2 FR LX 2 1 LY 2 1 LY 3 1 LY 4 1 FI TE 5 5  SINGLE INDICATOR, CANNOT ESTIMATE ERROR

  16. Re-expressed as: e3 variance=0 Same variance as e3 in previous model Same as lambda parameter in previous model

  17. The same sort of principle can be used for other purposes too: Imposing an inequality constraint. Example: We wish to impose a constraint such that VAR(e3) > 0 (don’t allow negative error variance).

  18. Lambda 2, lambda 3: same parm’s Variance of ksi-2 fixed to 1.0 X3 = lambda3 KSI1 + lambda4 KSI2 VAR(X3) = lambda32*VAR(Ksi-1) + lambda42 *VAR(KSI-2) Since…..VAR(ksi-2) = 1.0 [expression lambda42 replaces VAR(e3) Regardless of estimate of lambda4, variance >0.

  19. The LISREL PROGRAM: MO modelparameters statement FR free a parameter FI fix a parameter VA set a parameter to a value (if the parameter is free, this is the “start value” to override program default estimate; otherwise, it is the value to which a parameter is constrained

  20. The LISREL PROGRAM: If reading in a “system” .dsf file created by prelis: Title SY= input file if LISREL .dsf DA - dataparameters SE selection of variables MO – modelparameters … various FI and FR statements OU – outputparameters (see handout)

  21. The LISREL PROGRAM: ! Achievement Values Program #1 SY='z:\baer\Week2Examples\LISREL\Achieve1.dsf' SE REDUCE NEVHAPP NEW_GOAL IMPROVE ACHIEVE CONTENT / MO NY=6 NE=1 LY=FU,FR PS=SY TE=SY FI LY 1 1 VA 1.0 LY 1 1 OU ME=ML SC MI • SE statement lists variables to be used (always specify Y variables first) • can change order on SE statement. Here, REDUCE is Y1, NEVHAPP is Y2, etc. LY 1 1 refers to REDUCE. • OU : ME=ML (maximum likelihood) SC (standardized solution) MI (provide modification indices)

  22. LISREL Output: Parameter Specifications LAMBDA-Y ETA 1 -------- REDUCE 0 NEVHAPP 1 NEW_GOAL 2 IMPROVE 3 ACHIEVE 4 CONTENT 5 PSI ETA 1 -------- 6 THETA-EPS REDUCE NEVHAPP NEW_GOAL IMPROVE ACHIEVE CONTENT -------- -------- -------- -------- -------- -------- 7 8 9 10 11 12 Reference indicator is “fixed” All fixed parameters represented by 0. Theta-eps is diagonal

  23. LISREL Output LISREL Estimates (Maximum Likelihood) LAMBDA-Y ETA 1 -------- REDUCE 1.00 NEVHAPP 2.14 (0.37) 5.72 NEW_GOAL -2.76 (0.46) -6.00 IMPROVE -4.23 (0.70) -6.01 ACHIEVE -2.64 (0.45) -5.87 CONTENT 2.66 (0.46) 5.78

  24. LISREL Output Covariance Matrix of ETA ETA 1 -------- 0.01 PSI ETA 1 -------- 0.01 (0.00) 3.08 THETA-EPS REDUCE NEVHAPP NEW_GOAL IMPROVE ACHIEVE CONTENT -------- -------- -------- -------- -------- -------- 0.53 0.38 0.19 0.21 0.36 0.50 (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 38.84 36.44 28.79 18.92 34.53 35.92 Squared Multiple Correlations for Y - Variables REDUCE NEVHAPP NEW_GOAL IMPROVE ACHIEVE CONTENT -------- -------- -------- -------- -------- -------- 0.02 0.11 0.29 0.46 0.17 0.13

  25. LISREL Output Modification Indices and Expected Change No Non-Zero Modification Indices for LAMBDA-Y No Non-Zero Modification Indices for PSI Modification Indices for THETA-EPS REDUCE NEVHAPP NEW_GOAL IMPROVE ACHIEVE CONTENT -------- -------- -------- -------- -------- -------- REDUCE - - NEVHAPP 323.45 - - NEW_GOAL 24.46 4.29 - - IMPROVE 92.13 52.90 87.29 - - ACHIEVE 19.12 48.71 0.97 33.31 - - CONTENT 170.74 243.43 58.94 21.28 1.82 - - Expected Change for THETA-EPS REDUCE NEVHAPP NEW_GOAL IMPROVE ACHIEVE CONTENT -------- -------- -------- -------- -------- -------- REDUCE - - NEVHAPP 0.15 - - NEW_GOAL 0.03 0.01 - - IMPROVE 0.08 0.06 0.10 - - ACHIEVE 0.04 0.05 0.01 0.06 - - CONTENT 0.13 0.14 0.06 0.05 0.01 - - Completely Standardized Expected Change for THETA-EPS REDUCE NEVHAPP NEW_GOAL IMPROVE ACHIEVE CONTENT -------- -------- -------- -------- -------- -------- REDUCE - - NEVHAPP 0.32 - - NEW_GOAL 0.09 0.04 - - IMPROVE 0.18 0.15 0.29 - - ACHIEVE 0.08 0.12 0.02 0.14 - - CONTENT 0.23 0.27 0.14 0.10 0.02 - - Maximum Modification Index is 323.45 for Element ( 2, 1) of THETA-EPS

  26. Lisrel program input If reading in a covariance matrix generated by PRELIS instead of a .dsf file: DA NO=# cases NI=# of input var’s MA=CM {MA = type of matrix to be analyzed; default = CM, or a covariance matrix} CM FI=‘c:\file1.cov’ input file specification(cov) SE 2 3 6 9 8 7 / Selection: corresponds to order in which variables located on input covariance matrix (3rd variable on the matrix is now Y2).

  27. Another LISREL example: ! Achievement Values Program #8: Adding One Extra Measurement Model Path SY='z:\baer\Week2Examples\LISREL\Achieve1.dsf' SE REDUCE NEVHAPP NEW_GOAL IMPROVE ACHIEVE CONTENT GENDER AGE EDUC INCOME/ MO NX=4 NK=4 NY=6 NE=2 LX=ID PH=SY,FR TD=ZE LY=FU,FI C PS=SY,FR TE=SY GA=FU,FR FI LY 2 1 FI LY 3 2 VA 1.0 LY 2 1 LY 3 2 FR LY 1 1 LY 6 1 LY 4 2 LY 5 2 FR LY 1 2 PD OU ME=ML SE TV SC MI

  28. (from output listing) Parameter Specifications LAMBDA-Y ETA 1 ETA 2 -------- -------- REDUCE 1 2 NEVHAPP 0 0 NEW_GOAL 0 0 IMPROVE 0 3 ACHIEVE 0 4 CONTENT 5 0 GAMMA GENDER AGE EDUC INCOME -------- -------- -------- -------- ETA 1 6 7 8 9 ETA 2 10 11 12 13 PHI GENDER AGE EDUC INCOME -------- -------- -------- -------- GENDER 14 AGE 15 16 EDUC 17 18 19 INCOME 20 21 22 23 PSI ETA 1 ETA 2 -------- -------- ETA 1 24 ETA 2 25 26 THETA-EPS REDUCE NEVHAPP NEW_GOAL IMPROVE ACHIEVE CONTENT -------- -------- -------- -------- -------- -------- 27 28 29 30 31 32

  29. (output) LISREL Estimates (Maximum Likelihood) LAMBDA-Y ETA 1 ETA 2 -------- -------- REDUCE 1.13 0.65 (0.07) (0.08) 17.32 8.53 NEVHAPP 1.00 - - NEW_GOAL - - 1.00 IMPROVE - - 1.85 (0.12) 16.00 ACHIEVE - - 0.99 (0.06) 15.95 CONTENT 1.16 - - (0.06) 19.84 GAMMA GENDER AGE EDUC INCOME -------- -------- -------- -------- ETA 1 0.02 -0.01 0.03 0.01 (0.02) (0.00) (0.00) (0.00) 1.14 -10.40 10.04 5.67 ETA 2 0.07 0.00 0.01 0.00 (0.01) (0.00) (0.00) (0.00) • 4.90 4.81 4.19 -0.79

  30. Covariance Matrix of ETA and KSI ETA 1 ETA 2 GENDER AGE EDUC INCOME -------- -------- -------- -------- -------- -------- ETA 1 0.15 ETA 2 -0.04 0.07 GENDER -0.01 0.02 0.25 AGE -2.25 0.37 -0.08 269.69 EDUC 0.53 0.06 -0.07 -18.55 13.75 INCOME 0.47 -0.08 -0.98 -15.71 5.55 20.57 Squared Multiple Correlations for Structural Equations ETA 1 ETA 2 -------- -------- 0.22 0.03

  31. (LISREL output) Modification Indices and Expected Change Modification Indices for LAMBDA-Y ETA 1 ETA 2 -------- -------- REDUCE - - - - NEVHAPP - - 3.55 NEW_GOAL 4.90 - - IMPROVE 0.84 - - ACHIEVE 2.18 - - CONTENT - - 3.55

  32. Completely Standardized Solution LAMBDA-Y ETA 1 ETA 2 -------- -------- REDUCE 0.59 0.24 NEVHAPP 0.59 - - NEW_GOAL - - 0.52 IMPROVE - - 0.79 ACHIEVE - - 0.41 CONTENT 0.59 - - GAMMA GENDER AGE EDUC INCOME -------- -------- -------- -------- ETA 1 0.03 -0.25 0.25 0.15 ETA 2 0.12 0.11 0.10 -0.02 (could have used LA (labels) statement to provide labels for these latent variables)

  33. Reproduced covariances in matrix form First examples are for SEM models that are “manifest variable only” – no latent variables.

  34. Manifest variables only

  35. Manifest variables only

  36. Manifest variables only Previous example had no paths connecting endogenous y-variables (no “Beta” matrix). A bit more complicated with these included:

  37. Manifest variables only With Beta matrix:

  38. Manifest variables only

  39. Manifest variables only

  40. Manifest variables only

  41. Manifest variables only

  42. Latent variables included Measurement model only

  43. Latent variables included

  44. δ

  45. (last slide)

More Related