1 / 21

Natural Resources modeling of heathlands: targets & indicators

Natural Resources modeling of heathlands: targets & indicators. Gerrit W. Heil. Utrecht University. scenarios. drivers. Stake- holders. targets. indicators. Natural Resources Management. ecosystems. heathlands. canopy cover. Heathland Management. Manage- ment. Heathland

kita
Download Presentation

Natural Resources modeling of heathlands: targets & indicators

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Natural Resources modeling of heathlands: targets & indicators Gerrit W. Heil Utrecht University

  2. scenarios drivers Stake- holders targets indicators Natural Resources Management ecosystems

  3. heathlands canopy cover Heathland Management Manage- ment Heathland managers Diversity Recreation Production ecosystem services

  4. Sulfur and nitrogen deposition in The Netherlands

  5. National Park “Hoge Veluwe” -1979

  6. National Park “Hoge Veluwe” -1983

  7. 100 % Calluna trees grass structure management intensity Conceptual model of heathland management 1 2 3 4 Four land utilization structure types of heathland in relation to management intensity, structural diversity and species composition. Type 1 = open heathland, poor in structural diversity, with Calluna cover > 75%, Type 2 = open heathland, rich in structural diversity, with Calluna cover > 60%, and less than 35% grass cover, Type 3 = a mosaic of heathland, forest (<35% cover) and grassland, Type 4 = forest (cover between 60 and 80%) with patches of heathland.

  8. Grazing by cattle

  9. Table 1: Results of the cluster analysis of vegetation releves differing in: no management or grazing Dry heath wet heath Dry heath <--ungrazed-type---><-ericetum ->< ----grazed-type-------> grazing > -+-----++---++--++--+++-+--+--++-+++-+++++++++++--++--++++ Releve nr. 562252231323347835784 13477277138 167 2525556246661568 4 1102013562418090758726437568137964862562947877928936551278 Species name 12 Cera font ------------------------------1--------------------------- 00000 31 Geni angl --------------------1---11-111-1-1-111-------------------- 00000 53 Rham fran ---------------1----1-------------1----------------------- 00000 57 Sorb aucu ------------------------------1--------------------------- 00000 27 Eric tetr 1------1-------------11-111-111-----1---1----------------- 00001 41 Moli caer --------------------1111111-111-----1--------------------- 00001 30 Gali saxa ---------------1--------------1-1------------------------- 0001 33 Hier pilo --------1---------------------1--------------------------- 0001 49 Pote erec --------1-----------1-------1-1-------------------------1- 0001 40 Mela prat --1111---------------------------------------------------- 00100 50 Prun sero --11111111-11--1---11---------1---1-------------------1--- 00100 54 Rubu ssp --111-11--1----1-----------1111---------1----------------- 00100 56 Saro scop ----1----1-----11----------1------------------------------ 00100 52 Quer rubr 1-1-1-------------------------------------------------1--- 00101 3 Amel lama --1--11-111----------1-----------11--11------------------- 001100 9 Camp para ---1-1-1--1----111111------1--1-1--1----11---------1---1-- 001100 51 Quer robu 1111111-1------1-----11----1--1------1----------------1--- 001100 11 Care pilu --11-11111111-1-1--111--11111111111-1-1-1----1-1-1-------- 001101 44 Pinu sylv ----1--1-----1--11----11-111-----------1----------1------- 001101 24 Dant decu -1----11---------------------111111-1------------1----1-1- 00111 43 Pleu schr 111111-----------------------------------111-------------- 010 2 Agro vine --1--111--1111-----------1-11---1---1---11111--11-----1111 01100 7 Call vulg 11111111111111-1111111111111111111111111111111111111111111 01100 25 Desc flex 11111111111111111111-11111-11111111111111111111111-1111111 01100 35 Hypn jutl 11111111111--111111111111111111--1111111111111111111111-11 01100 29 Fest tenu 11---11111111-111-11-1111111111111-111111111111-11----1111 01101 32 Geni pilo ------------------------1-1---1--1-11--1-------1---------1 0111 42 Nard stri --------1---------------------11-----11-----------------1- 1000 55 Rume acet ------1-11111111------1----11-111--111-1111-111111----1111 1000 5 Betu vern --1------1------11---------------------11------------111-- 1001 26 Dicr scop --1111111-1--1-1-1-1-11----1-11-1111111111111-111111111111 1001 38 Leuc glau ----------------1---1-------1---------------------11-1---- 101 1 Agro tenu --------11-1----1--------------------1111111-----1----1--- 1100 10 Care aren -1--1-----------------------------------------1111----11-1 1100 13 Clad bacc ---------------------------------11111--1-111111---11--1-- 1100 14 Clad chlo 11-----11-----111-------11-1--1--1111111111111111111111111 110100 20 Clad rang ---------------------------------1--------1---------1-11-- 110100 21 Clad port --------1--------1-----------------1-111--1--------11--1-1 110100 8 Camp intr --------1-----------111-1--1-----11-111-111111-1-1111-1111 110101 48 Poly peri --------------------------------1-----1-------------1-1--- 110101 39 Luzu mult ------------------------------1------1----------------1-1- 11011 45 Pohl nuta --------------------------------1---------------------11-- 11011 15 Clad cocc ---------------------------------------------1-1---------- 1110 16 Clad floe -------------------------------------11-1-111111--1-1111-1 1110 36 Leci ulig 11--------------------------------------11111-1-1--------- 1110 1111111111111111111100000000000001111111111111111111111111

  10. Lichen rich Calluna heath

  11. Remotely Sensed Image ™ NP Hoge Veluwe for sampling of canopy cover – diversity proxy “Oud Reemstveld” 4000 meters

  12. Normalized Difference Vegetation Index

  13. diversity recreation production Canopy cover - diversity proxy

  14. Two species competing for canopy space Species 1 Species 1 Canopy space Canopy space Species 2 Species 2 t = 1 t = 0

  15. Structure of heathland meta-model removal of biomass competition beetles Calluna vulgaris Deschampsia flexuosa seed seed soil

  16. A Lotka-Volterra competition model for canopy space dN1/dt = r1N1 (C-N1-N2) / C - β1N1-δN1 dN2/dt = r2N2 (C-N2-N1) / C - β2N2 Where: N1 and N2 = canopy cover of two competing species C = maximum canopy cover r = species specific growth rate in relation to nitrogen availability β = species specific mortality rate δ = stochastic outbreaks of heather beetle infestation assumption: both species have the same maximum canopy cover

  17. 25 kg/ha/yr atmospheric nitrogen deposition

  18. 25 kg/ha/yr atmospheric nitrogen deposition

  19. Approach for future NR-modeling

  20. Conclusions • Setting targets (services) in combination with apparent indicators is important for the success of Natural Resources Management. • Natural Resource modeling explicates the potential of indicators to assess the targets. Utrecht University

More Related