220 likes | 367 Views
Test TODAY at 9:30 am in CNH-104 !!!. Work and Energy. Review of scalar product of vectors Work by a constant force Work by a varying force Example: a spring. Work and Energy. Newton’s approach:. - acceleration at any instant is caused by forces.
E N D
Test TODAY at 9:30 am in CNH-104 !!! Physics 1D03 - Lecture 19
Work and Energy • Review of scalar product of vectors • Work by a constant force • Work by a varying force • Example: a spring Physics 1D03 - Lecture 19
Work and Energy Newton’s approach: - acceleration at any instant is caused by forces Energy approach: Net work = increase in kinetic energy • equivalent to Newton’s dynamics • scalars, not vectors • compares energies “before and after” Physics 1D03 - Lecture 19
Math Review The scalar product or dot product of two vectors gives a scalar result: vector • vector = scalar Physics 1D03 - Lecture 19
and ScaIar product and Cartesian components: (note the right-hand-side is a single scalar) To prove this, expand using the laws of arithmetic (distributive, commutative), and notice that since, i, j, k are mutually perpendicular since they are parallel unit vectors Physics 1D03 - Lecture 19
Work Work by a constant force F during a displacement s: Work = (component of F parallel to motion) x (distance) We can be write this as: Work = F• d = Fdcos(θ) Units : N • m = joule (J) This is the “scalar product”, or “dot product”. Work is a scalar.If work is done on a system, W is positive (eg: lifting an object)If work is done by a system, W is negative (eg: object falling) Physics 1D03 - Lecture 19
Quiz A constant force is applied to an object while it undergoes a displacement The work done by is : Physics 1D03 - Lecture 19
Example A person walks down the stairs. Is the work done by gravity positive or negative ? What if the person were to walk up the stairs ? Physics 1D03 - Lecture 19
Example You are pulling a sled with a force of 50N at an angle of 30o to the horizontal, for a distance of 25m. Determine the work done by you in pulling the sled. Physics 1D03 - Lecture 19
a) 20 J b) c) 40 J Quiz Fg = 5 N P = 10 N 2 m 3 m The two forces, P and Fg are constant as the block moves up the ramp. The total work done by these two forces combined is: Physics 1D03 - Lecture 19
Example 2.5 m Fp = 120 w= 100 N fk = 50 N n A block is dragged 2.5 m up along the slope. Which forces do positive work? A) negative work? B) zero work? Physics 1D03 - Lecture 19
Example 2.5 m Fp = 120 w= 100 N fk = 50 N n The block is dragged 2.5 m up along the slope of 37o. Find : • work done by Fp • work done by fk • work done by gravity • work done by normal force • Total work on the block Physics 1D03 - Lecture 19
Wp = (120 N)(2.5 m) = 300 J • Wf = (- 50 N)(2.5 m) = -125 J • Wg = • Wn = 0 ( motion) 2.5m d=2.5m sin(37o) F=mg Total : 300 + (- 125) + (- 150) = 25 J Physics 1D03 - Lecture 19
5 min rest Physics 1D03 - Lecture 19
Forces which are not constant: Example: How much work is done to stretch a spring scale from zero to the 20-N mark (a distance of 10 cm)? We can’t just multiply “force times distance” because the force changes during the motion. Our definition of “work” is not complete. Varying force: split displacement into short segments over which F is nearly constant. F(x) x For each small displacement Dx, the work done is approximately F(x) Dx, which is the area of the rectangle. F D x Physics 1D03 - Lecture 19
Work is the area (A) under a graph of force vs. distance We get the total work by adding up the work done in all the small steps. As we let Dx become small, this becomes the area under the curve, and the sum becomes an integral. F(x) F(x) A x x Split displacement into short steps Dx over which F is nearly constant... Take the limit as Dx 0 and the number of steps Physics 1D03 - Lecture 19
F(N) 5 x(m) 0 1 2 3 4 5 6 Variable Force: Determine the work done by a force as the particle moves from x=0 to x=6m: Physics 1D03 - Lecture 19
In 1D (motion along the x-axis): Another way to look at it: Suppose W(x) is the total work done in moving a particle to position x. The extra work to move it an additional small distance Dx is, approximately,DW F(x) Dx. Rearrange to get In the limit as Dx goes to zero, Physics 1D03 - Lecture 19
An Ideal Spring Hooke’s Law: The tension in a spring is proportional to the distance stretched. or, F = kx The spring constant k has units of N/m Directions: The force exerted by the spring when it is stretched in the +x direction is opposite the direction of the stretch (it is a restoring force): F = -kx and E=½kx2 Physics 1D03 - Lecture 19
Example: Show that for a spring, E= ½ kx2. Physics 1D03 - Lecture 19
Quiz A spring is hanging vertically. A student attaches a 0.100-kg mass to the end, and releases it from rest. The mass falls 50 cm, stretching the spring, before stopping and bouncing back. During the 50-cm descent, the total work done on the mass was: • zero • 0.49 J • -0.49 J • none of the above Physics 1D03 - Lecture 19
Quiz A physicist uses a spring cannon to shoot a ball at a gorilla. The cannon is loaded by compressing the spring 20 cm. The first 10 cm of compression requires work W. The work required for the next 10 cm (to increase the compression from 10 cm to 20 cm) would be: • W • 2W • 3W • 4W Physics 1D03 - Lecture 19