710 likes | 919 Views
Fueling Supermassive Black Holes and Cosmological Evolution. Jian-Min Wang Institute of High Energy Physics (IEHP) June 23, 2011, Tsinghua Collaborators: IHEP group Y.-M. Chen , C. Hu , Y.-R. Li, J.-Q. Ge, P. Du, C. Cheng
E N D
Fueling Supermassive Black Holes and Cosmological Evolution Jian-Min Wang Institute of High Energy Physics (IEHP) June 23, 2011, Tsinghua Collaborators: IHEP group Y.-M. Chen, C. Hu, Y.-R. Li, J.-Q. Ge, P. Du, C. Cheng L. C. Ho, A. Marconi, G. Ferland, J. Baldwin, A. King, R. Staubert
Astrophysical Black Holes • Mass: gravity • Angular momentum: spins • Formation and Cosmic: growth • Duty cycles: active or inactive • Obscuration: surroundings • Charges(X)
SMBHs and Related Issues Coevolution (SMBH+G) IHEP: G. mergers (wet) star bursts AGNs Dual AGNs Unification Scheme
Outline • Fueling SMBHs • Dynamics of AGN-SB connection • spins: angular momentum • radiative feedback: -ray emissions • dual AGNs: merger processes • open questions • Conclusions
Fueling SMBHs inflow and metallicity (<pc)
Spectra and Structure of Quasars Very Thick Torus very thin accretion disk?
Obs. evidence: I Z-L relation Metallicity-Luminosity relation episodic activity Hamann & Ferland (1993) Matsuka et al. (2010): SDSS data
Obs. Evidence: II self-gravitating disk • Fitting BBB: Laor & Netzer (1989); Sun & Malkan (1989); Brocksopp et al. (2006), Lu (2007) Accretion rates: ~0.1-1.0 Eddington rates • Self-gravitating disk Paczynski (1978), Collin et al. (1994); Goodman (2003): star formation
Obs. evidence: III nuclear star cluster Ferrarese et al. (2006) Seth et al. (2008) Hammer et al. (2010)
Questions • Where is the accretion flow? • How to fuel SMBH within a few pc? • Where is star formation for metallicity? • How to form the nuclear star cluster?
Fe II from SDSS (~5000) (Hu et al. 2008, ApJ, 687, 78)(Hu et al. 2008, ApJ, 683, L115)(Ferland, Hu, Wang et al. 2009)
Fe II and Hβ relation: inflows • Fe II has same origination with intermediate Hβ • Fe II redshifts inverse with Eddington ratio • Fe II from Inner edge of the torus
Basic equations Stationary equation
SF rates versus Accretion rates Accretion rates can be supplied by SF disk
Nuclear Star Cluster: numerical simulations(Li, Yang & Wang 2010, ApJ to be submitted) • Remnant of multiple episodic activity:
Dynamics of Coevolution AGN-Starburst Connection AGN feedback
BPT diagram: AGN photoionization; SB photoionization Hints: any relation between AGN vs SB?
Type 2 AGNs: star formation history • ~ 10,000 type 2 AGNs: SFR~3’’-0.1kpc • Lbol ≈ 3500L[OIII] • MBH-sigma • L/LEdd– SSFR relation
SDSS sample: SB triggers AGNs? (Chen, Wang, et al. 2009, ApJ, 695, L130) Strong non-linear relation stresses the role of starburst itself in triggering AGNs: roles of young stars
Motivated by relations Lehnert et al. (2009) Dib et al. (2006)
SN feedback to the ISM: turbulence Core question: angular momentum? Wada & Norman (2002) simulation
High-z galaxies: AGN-SB relation? Genzel et al. (2008) & Lehnert et al. (2009): SINS sample by VLT
Exponential profile of galaxies: supernova feedback (Lin et al. 1989) first paper on SN feedback • Galaxies at high redshifts: fast evolving phase time-dependent structure
Time-dependent equations(Wang et al. 2009, ApJ, 701, L7; Yan & Wang 2010, ApJ, 724)
Yan & Wang (2010) Observations and models Lehnert et al. (2009)
Accreting BHs and star forming hosts: time lag • Netzer (2009) SB+AGNs influence each other with a delay AGN SF
AGN feedback: radiation pressure(Wang 2008, ApJ, 682, L81) Di Matteo et al. (2005)
Dynamics of dusty gas • Radiation pressure on dusty gas • Chang et al. (1988), Murray et al. (2005), Fabian et al. (2006)
Supersonic winds For typical red quasars, Av=0.2, the kinetic luminosity converted from radiation luminosity is
Non-thermal radiation from the fuzz • Fermi acceleration of electrons
Multiwavelength fuzz around radio-quiet quasars GLAST/Fermi
Detecting fuzz • For a red quasar with z=0.1, the fuzz has angular size is 50”: GLAST/Fermi optical-X-rays are very faint • Fermi observations • -ray background
Fermi results: -ray bubble(Su, Slatyer & Finkbeiner, 2010, ApJ, 724, 1044)
tQSO tgalaxy Duty cycle
Duty cycle: cosmological evolution Wang, J.-M. et al. 2008, ApJ, 673, L9 Wang, J.-M., et al. 2006, ApJ, 647, L17
Cosmological Spins Soltan (1982); Chokshi & Turner (1992); Yu & Tremaine (2002); Marconi et al. (2004): =0.1 Main growth of SMBH is driven by accretion Understanding trigger of SMBHs: spins Wang et al. (2006;2008): duty cycle
Spin evolution: -equation(Wang, Hu et al. 2009, ApJ, 697, L141)