1 / 41

MICE Beamline Status

MICE Beamline Status. m. apollonio. 1. Goals of the BeamLine (and possible actions for improvement). Generate PIONS (TGT) increase dip depth maximise production / capture in 1 st triplet Transport PI to DK solenoid effects of varying DKSol current

kolya
Download Presentation

MICE Beamline Status

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. MICE Beamline Status m. apollonio MICE VC 127 1

  2. Goals of the BeamLine (and possible actions for improvement) • Generate PIONS (TGT) • increase dip depth • maximise production / capture in 1st triplet • Transport PI to DK solenoid • effects of varying DKSol current • Capture Decay MUs (NB: backward == high purity) • Transport MU to diffuser • Match beam with (future) MICE lattice MICE VC 127 2

  3. Q1 Q2 TOF2 Q3 D1 Q4 Q5 Q6 Q7 Q8 Q9 D2 MICE VC 127 3

  4. -Q2 Q3 f1 f2 Q1-2-3 scan (past run) F x (Q1-Q2-Q3) Q1 GVA1 MICE VC 127

  5. D1 ISIS synchrotron p! Q3 Q2 Q1 Target Upstream Beam-line MICE VC 127

  6. data MC nominal config. Q1-Q2-Q3 scan – US beamline optimisation • Q1-2-3 varied from nominal value • Charged particlescounted downstream of DKsolenoid • Compared to MC • Charged • p-, m-,e- • predict effect for single current changes • verify in the next run • DATA (Friday 13th 2009!) charged p- m- e- MICE VC 127

  7. data MC nominal config. Q1-Q2-Q3 scan – US beamline optimisation • Q1 scan f1-only (MC) DATA p- m- e- MICE VC 127

  8. f2-only (MC) DATA data MC nominal config. Q1-Q2-Q3 scan – US beamline optimisation • Q2 scan p- m- e- MICE VC 127

  9. f3-only (MC) DATA data MC nominal config. Q1-Q2-Q3 scan – US beamline optimisation • Q3 scan p- m- e- MICE VC 127

  10. Muon BeamLine: G4BL simulation – Q1.DS p + ------------ CALC_EMI ------------- + eNT= 0.196 mm rad sx = 4.77 cm sY = 4.55 cm bT = 38397 mm aT = -7.105 RADIUS = 86.73 mm eNx= 0.2448 mm rad bx = 32146 mm ax= 9.68 ex= 0.074 mm rad eNy= 0.1568 mm rad by = 45755 mm ay= -32.9 ey= 0.047 mm rad P=444.71 MeV/c Z=Q1DS rad rad X’ vs X Y’ vs Y mm mm Y vs X MICE VC 127 10

  11. Muon BeamLine: G4BL simulation – TOF0 X’ vs X Y vs X dP/P<10% |dP/P|>10% Y’ vs Y m + ------------ CALC_EMI ------------- + eTN= 2.91 mm rad sX = 4.51 cm sY = 7.02 cm bT = 2874.8618 mm aT = 0.129 RADIUS = 91.4828342 mm eNx= 3.49 mm rad bx= 1400.4 mm ax= 0.489 eX=1.47 mm rad eNy= 2.43 mm rad by= 4867.7 mm ay= -0.392 eY=1.02 mm rad P=250 MeV/c Z=TOF0 MICE VC 127 11

  12. Muon BeamLine: G4BL simulation – TOF1 X’ vs X Y vs X dP/P<10% |dP/P|>10% Y’ vs Y m + ------------ CALC_EMI ------------- + eTN= 2.47 (mm rad) sX = 5.9 (cm) sY = 4.37 (cm) bT = 2334 (mm) aT = 0.86 RADIUS = 75.9 (mm) eNx= 2.60 bx= 2872 mm ax= 1.598 eNy= 2.35 by= 1727 mm ay= 0.039 P=223 MeV/c Z=TOF1 MICE VC 127 12

  13. DKSol SCAN • Rationale • Change DK current •  change optics downstream DKSol • handle for tuning • check data vs MC (our understanding of BL) • ongoing task (unfinished …) MICE VC 127

  14. RUN 1125 DATA (DKSOl SCAN) DATA Run1125(PI+) Ptgt = 336.85 - PD2 = 330.9 MeV/c DKSol = 679A = 3.9T (+0.74T) protons? ~8300 entries ~12000 entries slab hits … MICE VC 127

  15. p m beam line • Rationale • select p u.s. of DKSol with D1 • select m d.s. of DKSol with D2 • back scattered muons == purity MICE VC 127

  16. d.s. BL tuning: match to diffuser m Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Dipole1 Dipole2 DK solenoid p fix D2 fix D1 Pp=444 MeV/c Pm=255 MeV/c Pm=214 MeV/c Pm=208 MeV/c MICE VC 127 16

  17. Optimising the BL – match to diffuser This is the (e,P) matrix http://mice.iit.edu/bl/MATRIX/index_mat.html MICE VC 127

  18. Pdiff = 148 215 256 Ppi (tgt) = 350 190 350 MICE VC 127

  19. Will it work? MICE VC 127

  20. ~29. RUN 1174-1177 – PI- (444MeV/c) MU- (256 MeV/c) at D2 PI- should be here: 30.44 NB: DTmu(256)= DTmu(300) * beta300/beta256 = 28.55 * .943/.923 = 29.13 MICE VC 127

  21. ? PI- should be here: 30.44 RUN 1201 – PI- (336.8MeV/c) MU- (256 MeV/c) at D2 MU- should be the same as before … what is that? MICE VC 127

  22. Not happy with this “optimized” line Feel ONE Ppi for all cases not good Need a thought (== analysis of data) I rescale the central (444  256) case for 400.0  230 336.8  200 Select backward going muons MICE VC 127

  23. Muon BeamLine: G4BL simulation – Diffuser m + ------------ CALC_EMI ------------- + eN= 3.41 mm rad sX = 4.35 cm sY = 4.88 cm bT = 1250 mm aT = -0.0017 RADIUS = 65.3 mm ex= 3.76 mm rad bx= 1004 mm ax= 0.367 ey= 3.10 mm rad by= 1534 mm ay= -0.450 P=214 MeV/c Z=Diffuser MICE VC 127 23

  24. Measuring (e,P) from DATA • Rationale • checking if an optics produces the foreseen (a,b) at diffuser • measure e (and P) of the muon beam • How? • use TOF0 / 1 as (x,y) stations • define muon sample • track mu’s in the Q7-8-9 triplet • infer x’, y’  (x,x’) (y,y’) Mark Rayner’s tools MICE VC 127

  25. a) Monitoring the Run MICE VC 127

  26. e.g. ... (7, 9, 10, … December)PI (444 MeV/c)  MU (258 MeV/c) before new calib MICE VC 127

  27. b) Select muonsc) Compute phase space MICE VC 127

  28. RUN 1408 – P0=400 /PD2=230 selecting the muons MICE VC 127

  29. TOF 0 MICE VC 127

  30. TOF 1 MICE VC 127

  31. ---------------------------------------------------------------------------------------------------------------------------------------------- If muons... x RMS norm emittance = 4.5 mm y RMS norm emittance = 1.8 mm Transverse 4d RMS norm emittance = 2.8 mm MICE VC 127

  32. RUN 1386-1387 – P0=444 /PD2=256 selecting the muons MICE VC 127

  33. G4BL prediction MICE VC 127

  34. TOF 0 X’ vs X Y’ vs Y G4BL MICE VC 127

  35. TOF 1 X’ vs X G4BL Y’ vs Y MICE VC 127

  36. RUN 1409–1411 P0=336.8 /PD2=200 selecting the muons (very broad peak, I kept conservative) MICE VC 127

  37. -------------------------------------------------------------------------------------------------------------------------------------- If muons... x RMS norm emittance = 4.27 mm y RMS norm emittance = 1.77 mm Transverse 4d RMS norm emittance = 2.75 mm MICE VC 127

  38. MICE VC 127

  39. MICE VC 127

  40. Conclusions • After 1 year we are back on DATA taking • target is working • DKSol is ON • We have been collecting data Since September 2009 • Calibrations • Rate vs Target Dip Depth (AD) • Q123 scan • need to understand discrepancies • DKSol scan • analysis in progress • (e,P) matrix measurements • analysis just started, • Mark’s algorithm needs to be tuned • (e,P) optimsed optics do not look handsome  need to be understood and reviewed to some extent MICE VC 127

  41. Plans • Short term • keep taking pi  mu cases to increase statistics) • stick to (-) polarity to avoid rushing • Medium Term (Shutdown) • campaign of measurements of mag fields ? • hysteresis checks (doc is not clear + measurements done at I<Imax) • any other suggestion? • Longer term (>next User’s Run) • review optimisation of the (e,P) matrix • back to (+) polarity and repeat (e,P) data taking MICE VC 127

More Related