250 likes | 550 Views
Tropical Rainfall Measurement Mission (TRMM) and Global Precipitation Measurement (GPM) Mission Remote Sensing Specifications and Applications. Caitlin Moffitt CEE 6900. TRMM Background . Joint mission between NASA and JAXA Launched on November 27, 1997 from Tanegashima, Japan
E N D
Tropical Rainfall Measurement Mission (TRMM) and Global Precipitation Measurement (GPM) Mission Remote Sensing Specifications and Applications Caitlin Moffitt CEE 6900
TRMM Background • Joint mission between NASA and JAXA • Launched on November 27, 1997 from Tanegashima, Japan • Monitors rainfall in the tropics • Part of the NASA Mission to Planet Earth
TRMM Specifications • Orbit: 350 km • Inclination Angle: 35˚ • Non-sun-synchronous • Revisit Frequency: 11-12 hours • Track Speed: 6.9 km/s • Area covered: 35˚N to 35˚S Reference: TRMM 2009
Instruments on Board • TRMM Microwave Imager (TMI) • Precipitation Radar (PR) • Visible and Infrared Scanner (VIRS) • Cloud and Earth’s Radiant Energy System (CERES) • Lightning Imaging Sensor (LIS)
TRMM Microwave Imager (TMI) • 9-channel passive microwave radiometer • Frequencies: 10.65, 19.35, 21.3, 37, 85.5 GHz • Horizontal and vertical polarizations • Reads rainfall, water vapor, and cloud water • Scan Geometry • Swath: 758.5 km • Off-nadir: 52.8 Incident Angle • Conical Scan: 130˚
Scan Geometry of TMI Reference: Kummerow et al 1998
Precipitation Radar (PR) • Active Rain Radar • Frequency: 13.8 GHz • Scan Geometry: • Nadir • Spatial Resolution: 4.3 km • Range Resolution: 250 m • Swath: 215 km
Scan Geometry of PR Reference: Kummerow et al 1998
Visible Infrared Scanner (VIRS) • 5-channel visible and infrared passive radiometer • Wavelengths: 0.6-12μm • Reads brightness and temperature • Scan Geometry • Swath: 720 km • IFOV: 2.11 km nadir • Radiometric Properties: • Channels 1 and 2 read solar energy • Channels 3-5 read thermal energy
Scan Geometry of VIRS Reference: Kummerow et al 1998
GPM Background • Joint mission between NASA and JAXA • Scheduled to launch on July 21, 2013 • Monitors rainfall for the entire globe • Part of the NASA Mission to Planet Earth Reference: GPM 2009
GPM Specifications • Orbit: 407 km • Inclination Angle: 65˚ • Non-sun-synchronous • Revisit Frequency: ~3 hours • Track Speed: 7.2 km/s • Area covered: Entire globe
GPM Microwave Imager (GMI) • 13-channel passive microwave radiometer • Frequencies: 10-183 GHz • Horizontal and vertical polarizations • New high frequency channels to improve ice and snow measurements • Reads rainfall, water vapor, cloud water, ice and snow • Scan Geometry • Swath: 885 km • Off-nadir: 52.8 Incident Angle • Conical Scan: 140˚
GMI Flight direction Surface Track Speed = 7.2 km/s Flight direction DPR Range resolution = 250m Range resolution = 250 m 35.5 35.5 GHz radar GHz radar 13.6 13.6 GHz radar GHz radar Microwave radiometer Microwave radiometer swath width= swath width= swath width=245km swath width=245km swath width =800km swath width =~850km 100km 100km - - 5 5 km km Scan Geometry of GMI Reference: GPM 2009
Dual Frequency Radar (DFR) • Active Rain Radar operating at two frequencies • Frequency: 13.8 GHz (KuPR) • Scan Geometry: • Nadir • Spatial Resolution: 5 km • Range Resolution: 250 m • Swath: 215 km • Frequency: 35.5 GHz (KaPR) • Scan Geometry: • Nadir • Spatial Resolution: 5 km • Range Resolution: 250 -500 m • Swath: 245 km
GMI Flight direction Surface Track Speed = 7.2 km/s Flight direction DFR Range resolution = 250m Range resolution = 250 m 35.5 35.5 GHz radar GHz radar 13.6 13.6 GHz radar GHz radar Microwave radiometer Microwave radiometer swath width= swath width= swath width=245km swath width=245km swath width =885km 124km 100km - - 5 5 km km Scan Geometry of DFR Reference: GPM 2009
Applications • Precipitation Monitoring • Flood and Landslide Potential • Global Climatology • Tropical Storm Monitoring • Fire Detection
Precipitation Monitoring Reference: TRMM 2009
Flood Potential Reference: TRMM 2009
Landslide Potential Reference: TRMM 2009
Tropical Storm Monitoring Reference: TRMM 2009
Fire Monitoring Reference: TRMM 2009
Conclusions • TRMM data greatly expanded knowledge of global hydrology • Errors associated with TRMM data • GPM will provide more accurate rainfall data with better technology
References • Adler, R.F. “Estimating the Benefit of TRMM Tropical Cyclone Data in Saving Lives.” American Meteorological Society, 15th Conference on Applied Climatology,Savannah, GA, 20-24 June 2005 • Bidwell, S.W. et al. “The Global Precipitation Measurement (GPM) Microwave Imager (GMI) Instrument: Role, Performance and Status.” IGARSS 2005. Seoul, Korea, July 25-29, 2005. • Giglio, L. et al (2003). “A multi-year active fire dataset for the tropics derived from the TRMM VIRS.” International Journal of Remote Sensing. Vol. 24, No. 22, 4505–4525 • GPM. NASA. 22 Sept 2009. http://gpm.gsfc.nasa.gov/. • Hong, Y., R. Adler, and G. Huffman (2006), Evaluation of the potential of NASA multisatellite precipitation analysis in global landslide hazard assessment, Geophys. Res. Lett., 33, L22402, doi:10.1029/2006GL028010. • Kummerow, Christian et al. “The Tropical Rainfall Measurement Mission (TRMM) Sensor Package.” Journal of Atmospheric and Oceanic Technology. Volume 15 (June 1998). 809-817 • TRMM. 22 Sept 2009. NASA. 22 Sept 2009. http://trmm.gsfc.nasa.gov/.