1 / 46

Energy Dependence of Soft Hadron Production

Christoph Blume. 2nd International Workshop on the Critical Point and Onset of Deconfinement Bergen Mar. 30 - Apr. 3, 2005. Energy Dependence of Soft Hadron Production. Critical point. 1st order transition.  B = 0 : cross over transition at T  170 MeV. Cross over line

konala
Download Presentation

Energy Dependence of Soft Hadron Production

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Christoph Blume 2nd International Workshop on the Critical Point and Onset of Deconfinement Bergen Mar. 30 - Apr. 3, 2005 Energy Dependence of Soft Hadron Production

  2. Critical point 1st order transition B = 0: cross over transition at T  170 MeV Cross over line from lattice QCD T = 0: 1st order transition Lattice calculations: Fodor and Katz Bielefeld-Swansea group The QCD Phase DiagramThe Simplified Version Phase boundary separating QGP and hadronic world Christoph Blume Bergen Workshop, Mar.30-Apr.3 2005

  3. High energies (RHIC/LHC) B low QGP phase (most likely) reached Lower energies (AGS) B high System remains in hadronic phase Intermediate energies Vary B by studying nuclear collisions at different s Possible to locate where the phase boundary is reached? The QCD Phase DiagramHeavy Ion Reactions Christoph Blume Bergen Workshop, Mar.30-Apr.3 2005

  4. SPS AGS RHIC The QCD Phase DiagramExperimental Observables • SPS energy regime allows to explore an essential part of the phase diagram • Transition to QGP is likely to happen at SPS energies • Ebeam = 20 - 158 AGeV (sNN = 6.3 - 17.3 GeV) • Use hadronic observables to pin down phase transition • Systematic studies:  Energy dependence of central A+A reactions Christoph Blume Bergen Workshop, Mar.30-Apr.3 2005

  5. OutlineSoft Hadron Production • Soft physics regime • pt < 2 GeV/c • Bulk properties of particle production • Rapidity Spectra • Longitudinal expansion • Particle Yields • Strangeness • Chemical freeze-out conditions • Transverse Mass Spectra • Transverse expansion ( EOS?) • Thermal freeze-out conditions • Fluctuations • K/ (p/) fluctuations Christoph Blume Bergen Workshop, Mar.30-Apr.3 2005

  6. Rapidity Spectra Central Pb+Pb 7% (20-80) 5/10% (158) NA49 Change of shape only for L Others: ~ Gaussians Christoph Blume Bergen Workshop, Mar.30-Apr.3 2005

  7. Rapidity SpectraPions Central Pb+Pb/Au+Au Comparison AGS, SPS, and RHIC Single Gaussians! Christoph Blume Bergen Workshop, Mar.30-Apr.3 2005

  8. Rapidity SpectraEnergy Dependence of Widths Pion widths are close to Landau prediction, but not perfectly But: Perfect agreement to linear dependence on ybeam Christoph Blume Bergen Workshop, Mar.30-Apr.3 2005

  9. Rapidity SpectraEnergy Dependence of Widths Linear dependence on ybeam Clear hierarchy for Gaussian-like particles at SPS (p, ,  excluded):  > K+ > K-,  >  Seems to break down at AGS Christoph Blume Bergen Workshop, Mar.30-Apr.3 2005

  10. Rapidity SpectraMass Dependence of Widths  negatives Approx. linear dependence on particle mass Similar slope at all SPS energies  Thermal component of longitudinal flow Christoph Blume Bergen Workshop, Mar.30-Apr.3 2005

  11. Rapidity SpectraDependence on Strangeness Content Central Pb+Pb, 158 AGeV NA49 Net protons: 3 valence quarks (uud ) Net s: 2 valence (ud ) + 1 produced quark (s ) Net s: 1 valence (d ) + 2 produced quarks (ss ) Omegas: 3 produced quarks (sss ) Net protons difficult to reconcile with pure Landau ! Christoph Blume Bergen Workshop, Mar.30-Apr.3 2005

  12. Particle Yields AGS NA49 BRAHMS Central Au+Au, Pb+Pb 4 multiplicities only! Christoph Blume Bergen Workshop, Mar.30-Apr.3 2005

  13. Particle YieldsStatistical Hadron Gas Model Becattini et al., Phys. Ref. C69 (2004) 024905 Assumption of chemical equilibrium at the freeze-out point  Particle production can be described with a few parameters: V, T, B, s Christoph Blume Bergen Workshop, Mar.30-Apr.3 2005

  14. Particle YieldsPhase Diagram (II): Chemical Freeze-Out Chemical freeze-out points approach phase boundary at top SPS energies Does the system cross the phase boundary ? And if yes, where ? Freeze-out curve at E /N = 1GeV Cleymans and Redlich PRL 81 (1998) 5284 Christoph Blume Bergen Workshop, Mar.30-Apr.3 2005

  15. / K+/+ -/ K-/- / -++/ Particle YieldsEnergy Dependence Christoph Blume Bergen Workshop, Mar.30-Apr.3 2005

  16. UrQMD HSD E.L. Bratkovskaya et al., PRC 69 (2004), 054907 / K+/+ -/ K-/- / -++/ Particle YieldsEnergy Dependence Christoph Blume Bergen Workshop, Mar.30-Apr.3 2005

  17. Statistical hadron gas model: s = 1 P. Braun-Munzinger, J. Cleymans, H. Oeschler, and K. Redlich Nucl. Phys. A697 (2002) 902 / K+/+ -/ K-/- / -++/ Particle YieldsEnergy Dependence Christoph Blume Bergen Workshop, Mar.30-Apr.3 2005

  18. Statistical hadron gas model: s free F. Becattini, M. Gazdzicki, A. Keränen, J. Manninen, R. Stock PRC 69 (2004), 024905 / K+/+ -/ K-/- / -++/ Particle YieldsEnergy Dependence Christoph Blume Bergen Workshop, Mar.30-Apr.3 2005

  19. s-quark carriers: K-, K0(1)  (incl. 0) 0,-, - (2) ±(3) s-quark carriers: K+, K0(1)  (incl. 0) 0,+, + (2) ±(3) (1)K0  K+, K0  K- by isospin symmetry (2)Taken from hadron gas fit by F. Becattini et al., if not measured. (3)Empirical factor ( + ) /  = 1.6 assumed. Energy dependence of strangeness production changes at  30 AGeV Particle YieldsComparison s- and s-Carriers Christoph Blume Bergen Workshop, Mar.30-Apr.3 2005

  20. Maximum in strangeness/pion ratio Same for s and s quarks Particle Yields(Anti-)Strangeness to Pion Ratio Difficult to model Solid line: Statistical hadron gas model with s = 1 K. Redlich, priv. comm. Predicted as signal for the onset of deconfinement M. Gazdzicki and M.I. Gorenstein, Acta Phys. Polon. B30 (1999), 2705 Christoph Blume Bergen Workshop, Mar.30-Apr.3 2005

  21. Transverse Mass Spectra Central (7%) Pb+Pb NA49 Radial flow fit (“Blast Wave”) 20 AGeV 30 AGeV Here: tindependent of r Schnedermann, Sollfrank, and Heinz, Phys. Rev. C46 Christoph Blume Bergen Workshop, Mar.30-Apr.3 2005

  22. Transverse Mass Spectra p - K- Model: U. Wiedemann and U. Heinz, Phys. Rev. C56 (1997) 3265 B. Tomasik, nucl-th/0304079 Data: E895: nucl-ex/0306033 NA49: Phys. Rev. C66 (2002) 054902, nucl-ex/0403023 PHENIX: Phys. Rev. C69 (2004) 024904, nucl-ex/0307022 Christoph Blume Bergen Workshop, Mar.30-Apr.3 2005

  23. Transverse Mass SpectraEnergy Dependence of Fit Parameter Fit to -, K- and p Tch Box-shaped source profile and linear velocity profile Fit range 0.1 < mt-m0 < 0.8 GeV Energy dependence of Tf seems to change around 30 AGeV Thermal and chemical freeze-out different? Single freeze-out model? Continous increase of T Christoph Blume Bergen Workshop, Mar.30-Apr.3 2005

  24. Transverse Mass SpectraPhase Diagram (III): Thermal Freeze-Out Thermal freeze-out seems to be at lower temperature than chemical freeze-out from top AGS energies on Strongly model dependent ! Single freeze-out models ? Christoph Blume Bergen Workshop, Mar.30-Apr.3 2005

  25. Transverse Mass SpectraInverse Slope Parameters of Kaons Step in energy dependence Seems to be absent in p+p How about other particle types? p+p compilation from: M. Kliemant, B. Lungwitz, and M. Gazdzicki, PRC 69 (2004) 044903 Christoph Blume Bergen Workshop, Mar.30-Apr.3 2005

  26. Transverse Mass SpectraEnergy Dependence of mt-m0  negatively charged Energy dependence of transverse activity seems to change around 30 AGeV. General feature for pion, kaons and protons Christoph Blume Bergen Workshop, Mar.30-Apr.3 2005

  27. Transverse Mass SpectraInverse Slope Parameters of Kaons Feature cannot be described by transport models Christoph Blume Bergen Workshop, Mar.30-Apr.3 2005

  28. Transverse Mass SpectraInverse Slope Parameters of Kaons Hydro calculation Y. Hama et al. Braz. J. Phys. 34 (2004), 322, hep-ph/0309192 Assuming 1st order phase transition Initial conditions from NeXus  Change of EOS seen? Christoph Blume Bergen Workshop, Mar.30-Apr.3 2005

  29. Elliptic FlowEnergy Dependence Initial spatial anisotropy  different pressure gradients  momentum anisotropy v2 Mid-rapidity data, pt integrated Christoph Blume Bergen Workshop, Mar.30-Apr.3 2005

  30. 30 AGeV Elliptic FlowEnergy Dependence + Transport Model Data show saturation of scaled v2 Points to an initial QGP pressure from 30 AGeV on ! M. Bleicher, SQM04 Christoph Blume Bergen Workshop, Mar.30-Apr.3 2005

  31. FluctuationsThe Critical Point Endpoint of the first order phase transition line  crossover on left side Position quite uncertain But recent lattice calculations by Fodor and Katz predicts position at B = 360 MeV using physical quark masses It might be accessible in the SPS energy range Observables:Event-by-event fluctuations Christoph Blume Bergen Workshop, Mar.30-Apr.3 2005

  32. 160 GeV preliminary 20 GeV preliminary s= RMS/Mean * 100 [%] s2dynamic = s2data - s2mix FluctuationsParticle Ratios Event-by-event fluctuations of e.g. K/ • Compare to mixed event • reference • Resolution • Finite number statistics NA49  Extraction of dynamical fluctuations NA49 Christoph Blume Bergen Workshop, Mar.30-Apr.3 2005

  33. FluctuationsEnergy Dependence of K/p Fluctuations Data wider than mixed events reference Clear energy dependence of K/p fluctuations observed  Decrease with energy Fluctuation from UrQMD independent of energy Non-zero value due to energy and strangeness conservation preliminary Promising, but no clear evidence for critical point yet Christoph Blume Bergen Workshop, Mar.30-Apr.3 2005

  34. FluctuationsEnergy Dependence of p/p Fluctuations • Data narrower than reference • Can be caused by resonances Clear energy dependence of p/p fluctuations observed  Increase with energy preliminary • Similar trend seen in UrQMD • Resonance contribution changes with beam energy Christoph Blume Bergen Workshop, Mar.30-Apr.3 2005

  35. Summary • Systematic study of energy dependence (still ongoing) • Rapidity and transverse mass spectra • Particle Yields • Fluctuations • A variety of interesting features have been revealed: • Mass dependence of rapidity widths, seemingly independent of beam energy at SPS • Clear change of the energy dependence of mt-spectra at 30 AGeV  Evidence for a change of EOS? • Maximum in the strangeness to pion ratio at 30 AGeV  Evidence for deconfinement? • Outlook: Search for critical point • No clear evidence yet (K/ fluctuations)  dedicated search with future projects (SPS, FAIR) Christoph Blume Bergen Workshop, Mar.30-Apr.3 2005

  36. The End Christoph Blume Bergen Workshop, Mar.30-Apr.3 2005

  37. Particle YieldsEnergy Dependence Central Pb+Pb/Au+Au Mid-rapidity ratios Christoph Blume Bergen Workshop, Mar.30-Apr.3 2005

  38. Transverse Mass SpectraBlast Wave Model • Basic blast wave model: • Common freeze-out of all particle types • Boost invariant longitudinal expansion • Transverse expansion is modelled by a velocity profile • “Standard” version: Schnedermann, Sollfrank, and Heinz, Phys. Rev. C46 • Extended version: • Resonance contribution included • Baryonic resonances introduce dependence on B • Chemical freeze-out: Tch and B taken from freeze-out curve • Thermal freeze-out: System cools down, therefore assume: • Conservation of entropy • Conservation of effective particle numbers U. Wiedemann and U. Heinz, Phys. Rev. C56 (1997) 3265 B. Tomasik, nucl-th/0304079 Christoph Blume Bergen Workshop, Mar.30-Apr.3 2005

  39. Rapidity DistributionsLandau Scenario in p+p Pion production ~ Entropy Isentropic expansion Description of the pion gas as a 3D relativistic fluid L. D. Landau, Izv. Akad. Nauk. SSSR 17 (1953) 52 P. Carruthers and M. Duong-Van, Phys. Ref. D8 (1973) 859 Prediction: dN/dy is Gaussian of a width  = 2L given by: (simplified model) Christoph Blume Bergen Workshop, Mar.30-Apr.3 2005

  40. Rapidity SpectraKaons Single Gaussian works reasonably well for K- Does not really work for K+ at lower SPS energies  Use RMS Christoph Blume Bergen Workshop, Mar.30-Apr.3 2005

  41. / K+/+ -/ K-/- / -++/ Particle YieldsEnergy Dependence Christoph Blume Bergen Workshop, Mar.30-Apr.3 2005

  42. (*) M.I. Gorenstein, K. A. Bugaev and M. Gazdzicki, PRL. 88 (2002), 132301. B1 linear 90 0.5 Fit to K, p, ,  B2 linear 170 0.2 Fit to J/ and ’ (*) Transverse Mass SpectraThe Omega Evidence for early freeze-out of the Omega from blast wave fits? NA49 publication: C. Alt et al., nucl-ex/0409004 Christoph Blume Bergen Workshop, Mar.30-Apr.3 2005

  43. yP yT yP yT y y y y y’T y’P y0 y0 Rapidity SpectraRapidty Shift y Baryon number distributions at lower energies: higher energies: How does the rapidity shift y evolve with beam energy? Determines the energy available in the produced fireball Christoph Blume Bergen Workshop, Mar.30-Apr.3 2005

  44. Energy loss E : RHIC (sNN = 200 GeV): E/Nucleon = 73 ± 6 GeV Rapidity SpectraEnergy Dependence of y  BRAHMS, I.G. Bearden et al. PRL 93 (2004), 102301 Rapidity shift: Seems to increase linearly at AGS and SPS: y /ybeam  0.27 But: Weaker increase to RHIC energies! Christoph Blume Bergen Workshop, Mar.30-Apr.3 2005

  45. Rapidity SpectraEnergy Dependence ofNet-Protons BRAHMS, I.G. Bearden et al. PRL 93 (2004), 102301 The shape of the distributions changes dramatically with energy AGS: baryonic system  RHIC: mesonic system  Large implications in the hadronic sector Christoph Blume Bergen Workshop, Mar.30-Apr.3 2005

  46. Transverse Mass SpectraInverse Slope Parameters of Kaons Model comparisons M. Bleicher, SQM04 Additional resonances? UrQMD 2.1 Initial QGP pressure? Christoph Blume Bergen Workshop, Mar.30-Apr.3 2005

More Related