750 likes | 1.35k Views
Olefin Metathesis: A Mechanistic and Kinetic Study. Chris Whipp November 20, 2008. Metathesis in Chemistry. What is Olefin Metathesis?. Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res. 2001 , 34 , 18. What is Olefin Metathesis?. Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res. 2001 , 34 , 18.
E N D
Olefin Metathesis: A Mechanistic and Kinetic Study Chris Whipp November 20, 2008
What is Olefin Metathesis? Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res.2001, 34, 18.
What is Olefin Metathesis? Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res.2001, 34, 18.
What is Olefin Metathesis? Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res.2001, 34, 18.
What is Olefin Metathesis? Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res.2001, 34, 18.
What is Olefin Metathesis? Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res.2001, 34, 18.
Metals in Metathesis Ti Ti V Cr Ru Nb Mo Ta W Re Os Ir Pt Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res.2001, 34, 18.
Relative Reactivity of Metals Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res.2001, 34, 18. Tebbe, F. N.; Parshall, G. W.; Ovenall, D. N. J. Am. Chem. Soc.1979, 101, 5074.
Industry: The Origin of Metathesis Mol, J. C. J. Mol. Cat. A2004, 213, 49. Banks, R. L.; Bailey, G. C. Ind. Eng. Chem., Prod. Res. Dev. 1964, 170.
2005 Nobel Prize for Metathesis Chauvin, Y.; Schrock, R. R.; Grubbs, R. H. Angew. Chem. Int. Ed.2006, 47, 3740.
Metathesis Publications 1st Commerically available Grubbs catalyst 1st Commerically available Schrock catalyst
Metathesis in Synthesis Hirama, M.; Oishi, T.; Uehara, H.; Inoue, M.; Maruyama, M.; Oguri, H.; Satake, M. Science2001, 294, 1904. Martin, S. F.; Humphrey, J. M.; Ali, A.; Hillier, M. C. J. Am. Chem. Soc.1999,121, 866. Faucher, A.-M. Org. Lett. 2004, 6, 2901.
Outline • Establishment of the complete catalytic cycle • The Grubbs 1st and 2nd generation catalysts • Mechanistic studies on how these catalysts differ and why
Mechanism of Olefin Coordination Dias, E. L.; Nguyen, S. T.; Grubbs, R. H. J. Am. Chem. Soc.1997, 119, 3887.
Mechanism of Olefin Coordination Active Catalyst 18 e- Active Catalyst Precatalyst 14 e- Sanford, M. S.; Ulman, M.; Grubbs, R. H. J. Am. Chem. Soc.2001, 123, 749.
Phosphine Dissociation Experiments Phosphine exchange monitored by 31P NMR experiments over a range of temperatures Catalyst will not carry out subsequent metathesis steps Intermediates are observable by NMR Key intermediates could not be observed by NMR Sanford, M. S.; Ulman, M.; Grubbs, R. H. J. Am. Chem. Soc.2001, 123, 749.
Phosphine Dissociation Experiments Sanford, M. S.; Ulman, M.; Grubbs, R. H. J. Am. Chem. Soc.2001, 123, 749.
Determining Dependence on Phosphine Rate shows no dependence on phosphine concentration Vary equivalents of phosphine k (s-1) PR3 (eq) Sanford, M. S.; Ulman, M.; Grubbs, R. H. J. Am. Chem. Soc.2001, 123, 749.
Phosphine Dissociation Experiments Sanford, M. S.; Ulman, M.; Grubbs, R. H. J. Am. Chem. Soc.2001, 123, 749.
Determining Entropy of Activation Sanford, M. S.; Ulman, M.; Grubbs, R. H. J. Am. Chem. Soc.2001, 123, 749.
The Eyring Equation k = reaction rate constant kB = Boltzmann’s constant h = Planck’s constant T = temperature DG = Gibbs energy of activation R = Gas constant Atwood, J. D. Inorganic and Organometallic Reaction Mechanisms; VCH: New York, 1997, p 13.
The Eyring Equation y = mx + b Equation requires the variation of temperature ln(kB/h)+DS/R ln(k/T) -DH/R (1/T) Atwood, J. D. Inorganic and Organometallic Reaction Mechanisms; VCH: New York, 1997, p 13.
Determining Entropy of Activation Eyring Plot ln(k/T) (1/T) Sanford, M. S.; Ulman, M.; Grubbs, R. H. J. Am. Chem. Soc.2001, 123, 749.
Determining Entropy of Activation Sanford, M. S.; Ulman, M.; Grubbs, R. H. J. Am. Chem. Soc.2001, 123, 749.
The Updated Catalytic Cycle What is the conformation? Intermediate or transition state?
The Piers Catalyst Romero, P. E.; Piers, W. E.; McDonald. R. Angew. Chem. Int. Ed.2004, 43, 6161.
Metallacyclobutane: Transition State or Intermediate? Intermediate Romero, P. E.; Piers, W. E. J. Am. Chem. Soc.2005, 127, 5032.
The Grubbs Catalysts Sholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett.1999, 1, 953.
Gives electron density Removes electron density N-Heterocyclic Carbene Ligands Diez-Gonzalez, S.; Nolan, S. P. Coord. Chem. Rev.2006, 251, 874. Straub, B. F. Adv. Synth. Catal.2007, 349, 204.
The Trans Effect and Ligand Dissociation Atwood, J. D. Inorganic and Organometallic Reaction Mechanisms; VCH: New York, 1997, p 51.
The Trans Effect and Ligand Dissociation Atwood, J. D. Inorganic and Organometallic Reaction Mechanisms; VCH: New York, 1997, p 51.
Catalyst Activation by Phosphine Dissociation Catalyst activity is NOT directly proportional to phosphine dissociation Grubbs 2 must be more reactive once in the catalytic cycle Sanford, M. S.; Ulman, M.; Grubbs, R. H. J. Am. Chem. Soc.2001, 123, 749.
Catalyst Propagation Studies Highly reactive, will favour metathesis Stable complex Not metathesis active Sanford, M. S.; Ulman, M.; Grubbs, R. H. J. Am. Chem. Soc.2001, 123, 749.
The Updated Catalytic Cycle Large excess of olefin will favour forward direction Key Assumption: All steps after olefin coordination are fast
kobs (s-1) Olefin (eq) Catalyst Propagation Studies Sanford, M. S.; Ulman, M.; Grubbs, R. H. J. Am. Chem. Soc.2001, 123, 749.
Calculating the Rate Law A B C Rate Law for C Assume steady-state of B Sanford, M. S.; Ulman, M.; Grubbs, R. H. J. Am. Chem. Soc.2001, 123, 6543.
Calculating the Rate Law A B C Overall Rate Law Sanford, M. S.; Ulman, M.; Grubbs, R. H. J. Am. Chem. Soc.2001, 123, 6543.
At saturation: Saturation Kinetics A To get saturation kinetics, k-1 must be very small compared to k2 Will give pseudo first-order kinetics reactivity is different with Grubbs 1 and 2 Catalysts will reach saturation at different concentration of olefins Sanford, M. S.; Ulman, M.; Grubbs, R. H. J. Am. Chem. Soc.2001, 123, 6543.
At saturation: Catalyst Propagation Studies Does not reach saturation until 5300 eq. kobs (s-1) Under saturation kinetics at 5 eq. Olefin (eq) Sanford, M. S.; Ulman, M.; Grubbs, R. H. J. Am. Chem. Soc.2001, 123, 749.
At saturation: Saturation Kinetics A To get saturation kinetics, k-1 must be very small compared to k2 kobs (s-1) Grubbs 1 reaches saturation slowly k-1 might be important Grubbs 2 reaches saturation quickly May indicate large difference between k2, k-1 Olefin (eq) Sanford, M. S.; Ulman, M.; Grubbs, R. H. J. Am. Chem. Soc.2001, 123, 749.
The Updated Catalytic Cycle Key Assumption: All steps after olefin coordination are fast
Computational Studies What is the conformation needed for metallacyclobutane formation? Straub, B. F. Angew. Chem. Int. Ed.2005, 44, 5974.
Reaction Pathway of Grubbs 1 and 2 Straub, B. F. Angew. Chem. Int. Ed.2005, 44, 5974.
Catalyst Activation by Phosphine Dissociation Grubbs 1 initiates faster Sanford, M. S.; Ulman, M.; Grubbs, R. H. J. Am. Chem. Soc.2001, 123, 749.
Reaction Pathway of Grubbs 1 and 2 Straub, B. F. Angew. Chem. Int. Ed.2005, 44, 5974.