1 / 92

Gogny-HFB Nuclear Mass Model

Gogny-HFB Nuclear Mass Model. S. Goriely (ULB), S. Hilaire (CEA-DAM-DIF) et. al. J.-P. Ebran (CEA-DAM-DIF) ECT* 8-12/07/2013 . Outline.  Gogny -HFB Nuclear Mass Model Energy Density Functional The Gogny Force Results.

kory
Download Presentation

Gogny-HFB Nuclear Mass Model

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Gogny-HFB Nuclear Mass Model S. Goriely (ULB), S. Hilaire (CEA-DAM-DIF) et. al. J.-P. Ebran (CEA-DAM-DIF)ECT* 8-12/07/2013

  2. Outline  Gogny-HFB Nuclear Mass Model Energy Density Functional The Gogny Force Results  Relativistic Hartree-Fock-Bogoliubov in Axial Symmetry

  3. Gogny-HFB Mass Model : Motivation  Microscopic Mass Model : as good as possible description of all the properties of all nuclei for both ground and excited states  Feed Reaction model with Structure ingredients  Astrophysical applications : involve nuclei not experimentally accessible  Need for predictive approach

  4. I. Energy Density Functional

  5. I. Energy Density Functional  Designed to compute average value of few-body operators  Independent particle picture   

  6. I. Energy Density Functional Quantum Liquid-like G.S. Crystal-like G.S.

  7. I. Energy Density Functional  Particle-Hole and Particle-Particle fields involved in HFB-like equation

  8. I. EDF: Symmetry Breaking 3+[202] 1+[200] 1+[211] 5+[202] 3+[211] 1+[220] 1d3/2 8 2s1/2 1-[101] 1d5/2 3-[101] 8 8 8 20 20 20 20 20 20 20 20 20 1-[110] 2 1p1/2 1p3/2 1+[000] 2 2 2 2 2 2 2 2 2 1s1/2 8 8 8 8 8 8  Symmetry breaking : take into account additional correlations keeping a single particle picture 1 particule – 1 hole excitations 2 particules – 2 holes excitations 3 particules – 3 holes excitations

  9. I. EDF: Symmetry Breaking  Symmetry breaking : take into account additional correlations keeping a single particle picture

  10. I. EDF: Symmetry Restoration  Restoration of broken symmetries : MR-level  Configuration mixing method : GCM

  11. I. EDF: Symmetry Restoration

  12. II. Gogny Interaction  Gogny strategy : parametrize both p-h and p-p channels with the same phenomenological finite-range 2-body interaction

  13. II. Gogny Interaction  D1 : J. Dechargé & D. Gogny, Phys. Rev. C211568 (1980)  D1S : J.F. Berger, M. Girod& D. Gogny, Comput. Phys. Commun. 63 365 (1991)  D1N : F. Chappert, M. Girod & S. Hilaire, Phys. Lett. B668420 (2008)  D1M : S. Goriely,S. Hilaire, M. Girod& S. Péru, Phys. Rev. Lett. 102 242501 (2009).

  14. II. Gogny Interaction  Finite range : avoid pathologies “beyond HF” due to unrealistic behavior of 0-range forces at high relative momenta

  15. II. Gogny: Two Fitting Philosophies  14 parameters : (W,B,H,M)1 ; (W,B,H,M)2 ; t3 ; x3 ; a ; WLS ; m1 ; m2

  16. II. Gogny: Two Fitting Philosophies Initial Data Inversion B.E., Rc (16O,90Zr)  “Traditional” method involving small set of magic nuclei (!!!) at SR-level 4x4 equations system D1 D1S D1N Pairingconsiderations W1 B1 H1 M1 W2 B2 H2 M2 « Theoretical » data at SR-level 4x4 equations system Symmetryenergy Test in Nuclearmatter: (r, E/A)sat m*/m K t3; x3; a ; WLS ; m1 ; m2 Reject Validation

  17. II. Gogny: Two Fitting Philosophies  Make use of the huge data on masses and incorporate a maximum of physics in the functional  MR-level Parameters kept constant: 4(can be included in the fit) 1=0.7-0.8 ;2=1.2 ; x3=1 ;=1/3 (0.2-0.5 investigated) D1M • Parameters constrained: 3 • J ~ 29 - 32 MeV to reproduce at best neutron matter EoS • K ~ 230 - 240 MeV as expected from exp. breathing mode data • kFkept constant to reproduce charge radii at best (manually adjusted) (av, J, m*, K, kF) (B1, H1, W2, M2, t3) Parameters directly fitted to nuclear masses at MR-level: 7 (av , m*, W1, M1, B2, H2, Wso)

  18. II. Gogny: Two Fitting Philosophies D1M  Infinite base correction

  19. II. Gogny: Two Fitting Philosophies D1M 60Ni

  20. II. Gogny: Two Fitting Philosophies D1M 120Sn

  21. II. Gogny: Two Fitting Philosophies D1M  GCM + GOA  M. Girod and B. Grammaticos, Nucl. Phys. A33040 (1979)  J. Libert, M. Girod and J.-P. Delaroche, Phys. Rev. C60 054301 (1999)

  22. II. Gogny: Two Fitting Philosophies D1M For 1/3 of 2149 exp masses (Audi et al 2003) – N=Z,N=Z±1, N=Z±2 Trial force New force automatic fit on masses

  23. II. Gogny: Two Fitting Philosophies D1M Acceptable rms, J, K Trial force New force automatic fit on masses Check properties

  24. II. Gogny: Two Fitting Philosophies D1M • ~ 200/782 exp. charge radii • with dynamical correction • Play on kF to adjust globally Acceptable rms, J, K Trial force New force automatic fit on masses Check properties

  25. II. Gogny: Two Fitting Philosophies D1M • ~ 200/782 exp. charge radii • with dynamical correction • Play on kF to adjust globally • Nuclear Matter Properties Acceptable rms, J, K • + Landau Parameters (stability, sum rules, G0 ~ 0; G0’~ 0.9-1 (Borzov et al. 1981)) Trial force New force automatic fit on masses Check properties

  26. 244Pu II. Gogny: Two Fitting Philosophies D1M • ~ 200/782 exp. charge radii • with dynamical correction • Play on kF to adjust globally • Nuclear Matter Properties • Energy of 2+ levels Acceptable rms, J, K • Moment of inertia • + Landau Parameters (stability, sum rules, G0 ~ 0; G0’~ 0.9-1 (Borzov et al. 1981)) Trial force New force automatic fit on masses Check properties

  27. II. Gogny: Two Fitting Philosophies D1M Acceptable rms, J, K Acceptable rms, J, K,prop. Trial force New force New Cstr. automatic fit on masses Check properties

  28. II. Gogny: Two Fitting Philosophies D1M Acceptable rms, J, K Acceptable rms, J, K,prop. Trial force New force New Cstr. New D automatic fit on masses Check properties

  29. II. Gogny: Two Fitting Philosophies D1M Acceptable rms, J, K Acceptable rms, J, K,prop. Trial force New force New Cstr. New D New Dquad automatic fit on masses Check properties

  30. II. Gogny: Two Fitting Philosophies D1M Acceptable rms, J, K Acceptable rms, J, K,prop. Trial force New force New Cstr. New D New Dquad automatic fit on masses Check properties

  31. Quadrupole correction to the binding energy

  32. II. Gogny: Two Fitting Philosophies D1M Acceptable rms, J, K Acceptable rms, J, K,prop. Trial force New force New Cstr. New D New Dquad automatic fit on masses Check properties

  33. III. Results: Masses D1S Comparison with 2149 Exp. Masses • Eth = EHFB r.m.s ~ 4.4 MeV • Eth = EHFB - D r.m.s ~ 2.6 MeV • Eth = EHFB - D - Dquad r.m.s ~ 2.9 MeV

  34. III. Results: D1N and the Neutron Matter EOS  F. Chappert, M. Girod &S. Hilaire, Phys. Lett. B668 (2008) 420.

  35. III. Results: Masses D1N Comparison with 2149 Exp. Masses • Eth = EHFB r.m.s ~ 2.5 MeV • Eth = EHFB - D • Eth = EHFB - D - Dquad r.m.s ~ 0.95 MeV

  36. III. Results: Masses Comparison with 2149 Exp. Masses r.m.s ~ 2.5 MeV r.m.s ~ 0.95 MeV e = 0.126 MeV r.m.s = 0.798 MeV

  37. Results: Masses Comparison with 2149 Exp. Masses e = 0.126 MeV r.m.s = 0.798 MeV

  38. III. Results: Radii Comparison with 707 Exp. Charge Radii r.m.s = 0.031 fm

  39. III. Results: Pairing Sn

  40. III. Results: Pairing Sn

  41. III. Results: Nuclear Matter kF=1.346 fm-1J=28.6 MeV m*/m=0.746 Kinf =225 MeV Pure Neutron Matter

  42. III. Results: Nuclear Matter kF=1.346 fm-1J=28.6 MeV m*/m=0.746 Kinf =225 MeV

  43. III. Results: Nuclear Matter

  44. III. Results: Comparison with other Mass Formula D1M – HFB17 D1M – FRDM

  45. Conclusion & Perspectives  First Gogny Mass Model : r.m.s. = 0.798 MeV  With Audi et al 2013, r.m.s.(D1M) better and r.m.s.(D1S) gets worse  Implementation of exact coulomb exchange and (anti-)pairing  Octupole correlations  Development of generalized Gogny interactions (D2, …)

  46. Relativistic Hartree-Fock-Bogoliubov in Axial Symmetry J.-P. Ebran (CEA-DAM-DIF), E. Khan (IPN), D. PeñaArteaga (CEA-DAM-DIF), D. Vretenar (Zagreb University) J.-P. Ebran ECT* 8-12/07/2013

  47. Why a Relativstic Approach? Kinematics • Relevance of covariant approach : not imposed by the need for a relativistic nuclear kinematics, but rather linked to the use of Lorentz symmetry • Microscopic structure model = low-energy effective model of QCD  Many possible formulations but all not as efficient • Relativistic potentials : • S ~ -400 MeV : Scalar attractive potential • V ~ +350 MeV : 4-vector (time-like component) repulsive potential

  48. Why a Relativstic Approach? In medium Chiral Perturbation theory, D. Vretenar et. al. • Modification of the vacuum structure in presence of baryonicmatterat the origin of the S and V self energiesfelt by nucleons

  49. Why a Relativstic Approach? • QCD sumrules Large scalar and time-like self energieswith opposite sign

  50. Why a Relativstic Approach? • Spin-orbitpotentialemergesnaturallywith the empiricalstrenght • Time-oddfields = space-like component of 4-potential • Empiricalpseudospinsymmetry in nuclearspectroscopy • Saturation mechanism of nuclearmatter Figure from C. Fuchs (LNP 641: 119-146 , 2004)

More Related