E N D
Kinetička i potencijalna energija Energija je sposobnost tijela ili sustava tijela da obavljaju rad: što tijelo ima veću energiju, to je sposobnije da obavi veći rad. Kad tijelo obavlja rad, energija mu se smanjuje, i obratno, ako okolina obavlja rad na tijelu, energija tijela se povećava. Rad može prelaziti u energiju i obratno. Jedinica rada i energije je identična. Postoji više oblika energije: mehanička, električna, termalna (unutrašnja), kemijska, solarna, nuklearna... Općenito, postoje mehanički i nemehanički oblici energije. Mehanička energija makroskopskih tijela ili sustava tijela je zbroj kinetičke i potencijalne energije tih tijela. Kinetičku energiju uzrokuje gibanje tijela nekom brzinom, a potencijalnu energiju uzrokuje položaj tijela unutar sustava. Potencijalna i kinetička energija mogu se pretvarati jedna u drugu, mehanička energija može prelaziti u nemehaničke oblike energije i obratno. Energija može prelaziti iz jednog oblika u drugi, ali se ne može ni stvoriti ni uništiti. Rad, snaga, energija - II dio
Kinetička energija Kinetička energija je sposobnost tijela da mogu vršiti rad zbog toga što imaju određenu brzinu. Da bismo izračunali kolika je kinetička energija tijela mase m koje se giba brzinom v, izračunajmo rad koji je potreban da bi sila F ubrzala to tijelo na nekom putu iz mirovanja (v = 0) do brzine v: Slično, ako sila F ubrzava tijelo od početne brzine v1 do konačne brzine v2, rad potreban za to ubrzavanje je: Dakle, promjena kinetičke energije je jednaka izvršenom radu: Ova relacija, koja povezuje rad i promjenu kinetičke energije, se zove poučak o radu i kinetičkoj energiji. Rad, snaga, energija - II dio
Potencijalna energija Tijelo može imati i potencijalnu energiju koja dolazi zbog položaja tijela prema drugim tijelima ili zbog konfiguracije tijela ili sustava tijela. Ovisno o sili koja djeluje na tijelo, razlikujemo ove vrste potencijalne energije: • gravitacijska • elastična • elektrostatska • magnetska Rad, snaga, energija - II dio
Gravitacijska potencijalna energija Da bismo izračunali potencijalnu energiju tijela u gravitacijskom polju na Zemljinoj površini, pretpostavimo da se čestica mase m pomiče u homogenom polju sile teže (odnosno u gravitacijskom polju Zemlje što je približno isto) od točke A do točke B. Pomakne li se čestica za diferencijal puta ds, rad sile teže je: Rad sile teže na putu od A do B: Budući je: slijedi: Rad sile teže jednak je razlici dviju funkcija položaja. Funkcija mgy zove se gravitacijska potencijalna energija tijela na visini y. Razlika potencijalne energije početne i konačne točke jednaka je radu sile teže: Rad, snaga, energija - II dio
Gravitacijska potencijalna energija(Ep=mgy) Pretpostavili smo da je za y = 0 potencijalna energija jednaka nuli. Referentni nivo (Ep =0) može se odabrati na razne načine (za sustav Zemlja-tijelo na njezinoj površini, kao razina mora, površina tla, pod, ploha stila....) te je potencijalna energija određena do na aditivnu konstantu. U svim razmatranjima se pojavljuje razlika potencijalne energije pa nam ta proizvoljnost ne smeta. Za razliku od kinetičke energije koja može biti samo pozitivna, potencijalna energija može biti i pozitivna i negativna. Rad sile teže ne ovisi o obliku puta već samo o početnom i konačnom položaju tijela što znači da bismo isti rezultat dobili kad bi se tijelo iz točke A do točke B gibalo bilo kojom putanjom. Vektorska razlika ista je za bilo koju stazu koja prolazi kroz točke A i B. Rad, snaga, energija - II dio
Potencijalna energija opruge Rad vanjske sile pri rastezanju opruge za elongaciju s je: Vanjska sila je bila jednaka po iznosu, a suprotnog smjera sili opruge. Znači da je rad sile opruge jednak radu vanjske sile s negativnim predznakom: Rad sile opruge pri pomaku tijela iz položaja s1 u položaj s2 je: Potencijalna energija elastične sile opruge definira se izrazom: Uzmemo li dogovorom da je potencijalna energija nula u položaju ravnoteže (s = 0), tada je potencijalna energija elastične sile opruge: Ovdje je s elongacija ili pomak iz položaja ravnoteže. Rad, snaga, energija - II dio
Zadatak 3 • Kosina (prikazana na slici) nalazi se na stolu visine H = 2 m. Odredite brzinu tijela mase m = 5 kg na dnu kosine (L = 15 m i = 37˚), pretpostavljajući da kretanje započinje s vrha kosine, koristeći poučak o radu i kinetičkoj energiji. Koeficijent trenja je 0.30. m L h H Rad, snaga, energija - II dio
Korisno rad – kinetička energija (teorem) rad sile teže – potencijalna energija Iz trećeg zadatka: Rad, snaga, energija - II dio
Zadatak 4 • Predmet mase 1 kg klizi niz petlju na slici. S koje minimalne visine predmet mora krenuti bez početne brzine da bi uspješno napravio petlju polumjera 0.5 m? A C h B Rad, snaga, energija - II dio
Zadatak 5 • Pedeset je kockica povezano nitima u niz. Masa prve je 10 g, druge 20 g, treće 30 g itd. Ako na prvu počne djelovati vremenski promjenjiva sila F(t) = 2t, kolika je napetost niti između 35. i 36. kockice 10 s nakon početka gibanja? F(t) 2 50 1 3 49 Rad, snaga, energija - II dio