320 likes | 347 Views
Explore the basics of neutrino sources, interactions, detection techniques, and projects in this lecture by Henry T. Wong. Learn about Nobel Prize winners and key historical events in neutrino physics.
E N D
Student Lecture onNeutrino Detectors • Basics : Neutrino Source & Interactions • Survey of Detection Techniques • Projects Experimentalists Theorist Henry T. Wong / 王子敬 Academia Sinica / 中央研究院 @ THU / 清華大學 November 2002
Nobel Prize in Physics (2002)50% for n astrophys. : Ray. Davis Jr. (U. Penn) : “Classic” Chlorine Expt. Masatoshi Koshiba小柴昌俊(U. Tokyo) : Kamiokande & SuperK Citations leave room for future prizes on n physics !!! • 50% to Riccardo Giacconi, in X-Ray Astronomy
Neutrino History • 1914: continuous b-spectra (Chadwick) • 1930: postulation of neutrinos (Pauli) • 1934: theory of b-decay (Fermi) calculation of s(np) (Bethe,Peierls) • 1956: observartion reactor ne(Reines,Cowan) • 1957: measurement of n helicity (Goldhaber) • 1962: discovery of accelerator nm(BNL) • 1968: observation of solar neutrinos (Davis) • 1974: discovery of weak neutral currents (CERN) • 1987: observation of supernova SN1987a n’s (IMB,Kamiokande) • 1989: three families of light neutrinos (CERN) • 1998: evidence of atmospheric neutrino oscillation (Super-Kam., …) • 2000: observation of nt(Fermilab) • 2001: evidence solar neutrino oscillation (SNO+SK+GALLEX ……)
Neutrino Sources Observed window • n‘s everywhere: 300 per c.c. • from sun, supernovae, cosmic rays, reactors, accelerators, astrophysical sources, & relic Big Bang …
Cross Sections Strong Electro-magnetic • Challenges of Neutrino Experiments : “How to Beat the Small Cross-Section?” i.e.By building Massive Detectors while keeping cost/background Low ! Weak l(H2O) 250 light years ! BUT ….. En~ 1015 eV, L~Earth’s diameter
Neutrino Detection : Summary • ※ 0.1-1 keV Neutrinos: • R&D:Cryogenic techniques ※ keV-MeV Neutrinos: • Proven: Radiochemical Techniques (solar neutrinos with Cl, Ga) • R&D : World efforts to develop counter/real time+energy methods • TEXONO on Reactor Neutrinos: Crystal Scintillator, Solid-State Device • ※ MeV-GeV Neutrinos: • R&D:Water Cherenkov Detector, Liquid Scintillator ※ GeV-TeV Neutrinos: • Proven: multi “high energy physics” detector systems ※ Astrophysical UHE Neutrinos: • Projects: Water/Ice Cherenov, Radio/Sound Waves, Cosmic-Ray Showers ..
Radio-chemical Experiments – extracting 30 atoms from 30 tons (1029 atoms) of target materials. e.g. GALLEX: ne+71Ga71Ge, detected by EC X-rays
Favorite Technique for Massive Detector:Cherenkov Radiation Permits one Sensor to see Area of Λ2atten E. Kearns, BU
Super-Kamionkande ※ Water Cerenkov detector: 5k tons, viewed by 11,000+=50 cm PMTs in 1000 m underground site in central Japan ※ Physics: solar n, atmospheric n , long baseline accelerator n, proton decays .. ※ Accidents (PMTs imploded) Nov 01, 50% PMT data again end of 02 !!!
SK >5 MeV e-ring from ne+e scattering The Sun IS Burning !!
SK sub-GeV events from atmospheric n interactions m-ring from nmN e-ring from neN NC events with p02g
Sudbury Neutrino Observatory (SNO) ※ Heavy Water Cerenkov detector: 1k ton, shielded by 7k ton of water viewed by 9456 PMTs located 2000 m underground in Canada. ※ Physics: Solar n …
Actual measurements : only detect e- (a burst of light) : deconvolute the channels
(also Cl, Ga, diff. E) (also SK) ( 5s effect )
“Reines’ Reaction” for ne Detection :ne+pe++n • detect e+ then delayed n-capture • modern version : liquid scintillator (proton target) Discovery of Neutrinos , Reines 1956
KamLAND • Long Baseline Reactor n (sensitive to 20% of world’s reactors !) • ave. flight path of 160 km • 1 kton liquid scintillator in old Kamiokande site • probe “LMA” for solar n • first results “any time” (only 5 years from approved !!!!)
Accelerator n (1-10 GeV) Experiments : typical high energy physics techniques - tracking m for Q/p, calorimetry for em/had. Showers CC: nm+Nm-+X(shower) NC: nm+N nm +X(shower)
CHORUS NOMAD
Historic Bubble Chamber Neutrino Interaction Events nm+Nm-+X(shower) nm+e-nm+e- nm e- nm m-
DirectObservation of ntwith Nuclear Emulsion nN Interaction @ Emulsion Events from DONUT@FermiLab nt Field of View : 100 mmX120 mm
Optical CherenkovNeutrino Telescope Projects Gaols: detect astrophys. n at 1012-1015 eV ANTARES La-Seyne-sur-Mer, France BAIKAL Russia NEMO Catania, Italy DUMAND Hawaii (cancelled 1995) NESTOR Pylos, Greece AMANDA, South Pole, Antarctica
IceCube – km3n Telescope ※ To detect high energy (1012-1015 eV) n’s South Pole AMANDA IceCube
IceCube 1015 eV ntN event (sim.) “Double Bang Event” AMANDA “upward-going” m event τ Decay length O(100 m) at 1015 eV ντ
Radio Chenrenkov Detectors : for > 1015 eV neutrinos; target- Moon, Antartic Ice, Salt mine ……
En > 1019 eV: Detection of Cherenkov/florescence light from space
Summary & Outlook • Neutrinos are important but strange objects history of n physics full of surprises ! • Strong evidenceS of massive n’s & finite mixings Physics Beyond the Standard Model ! • More experiments & projects coming up EVEN MORE EXCITEMENT ! • TEXONO is also a (modest) part of it