1 / 44

Neutrino detectors : Present and Future

Neutrino detectors : Present and Future. Yifang Wang Institute of high energy physics. Neutrino industry. Neutrino physics : problems and methods. Oscillation /sterile neutrinos. Magnetic moments. Astro -objects . Atmos-pheric. E arth. Nuclear chemistry.

thao
Download Presentation

Neutrino detectors : Present and Future

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Neutrino detectors:PresentandFuture Yifang Wang Institute of high energy physics

  2. Neutrino industry

  3. Neutrino physics:problems and methods Oscillation /sterile neutrinos Magnetic moments Astro-objects Atmos-pheric Earth Nuclear chemistry Semiconductor/crystals/gaseous/scintillator Radioactive sources Liquid scintillator Mass Water Cerenkov Accelerator Cosmology Astronomy Geology Solar Reactor Dirac/ Majorana Emulsion Samplingdetector Relic-neutrino Liquid Argon

  4. Selectedtopics • Personnelflavors • Mainly on neutrino oscillations • Present experimental techniques with future prospects • Future trends I apologize for incompleteness, bias and mis-handling

  5. Selected Neutrino Experiments • Basic properties of neutrinos • Magnetic moments: Texono, GEMMA, … • Absolute mass: Katrin,Mare, Project 8, … • Neutrino oscillations & sterile neutrinos • Atmospheric neutrinos(q23): SuperK,INO … • Solar neutrinos(q12):SuperK, SNO, Borexino, … • Reactor neutrinos(q12,q13):KamLAND, DayaBay,Double CHOOZ, Reno,…  mass hierarchy • Accelerator neutrinos(q23,q13): MINOS,OPERA,MiniBooNe, T2K, NOVA,…  mass hierarchy, d, … • Neutrino astronomy& applications • Supernova  in combination with solar/atmospheric/reactor neutrinos • Geo-neutrinos  in combination with solar/reactor neutrinos • High energy neutrinos(not covered in this talk) • …

  6. Neutrino magnetic moments Bohr magnetonB= eh / 2 me • SM: • mn=0 mn(ne)=0 • mn0mn(ne) ~ 10-19 mB • Non-SM: • mn(ne) ~ 10-10-14mB • Astrophysics limit(model dependent) • He star, White dwarf, SN 1987 A, Solar(SuperK, KamLAND, Borexino), … • Directsearches: • 1/T excess in n-e scattering • TEXONO • 1kg ULB-HPGe • Background level: • ~ 1/(day kg KeV) • Threshold: • ~ 10 KeV • Limit: • mn(ne) < 1.3  10-10mB(90% CL)

  7. GEMMA • 1.5 kg HPGeinstalled within NaI active shielding. • Multi-layer passive shielding : electrolytic copper, borated polyethylene and lead • More HpGe, better shielding  Another fact of 10 ? [Phys. of At. Nucl.,67(2004)1948]

  8. Ultra-pure Ge detectors • Common technology for bbdecays, dark matter… • Future advances: • Mass: ~100 kg  1000 kg ? • Threshold: ~10 keV  1 keV ? • Cost: ~ kg/300K $  ~kg/30K $ ? • Efforts in China(Shenzhen U. & Tsinghua U.) to: • Reach the impurity to10-13 • Reduce the cost to < ~kg/30K $ ? Current status: impurity ~ 10-11/cm3 Resolution: 1.76KeV @ 1.33MeV Working on stability & repeatability

  9. Absolute Neutrino mass:bdecays • Requirement: • Source: • Low endpoint • High event rate • appropriate lifetime • Enough source material (thickness affect b spectrum) • Detector: • High resolution • Low background • Experiments: • Sourcedetector: Katrin, Project 8 • Source=detector: Mare

  10. Katrin: b spectrometer T1/2= 12.3 y Magnetic Adiabatic Collimation + Electrostatic Filter A large spectrometer: Sensitivity increase with area Low statistics for relevant events Resolution: ~ 1 eV Sensitivity @ 90%CL: m(n) < 0.2 eV Last such exp. ?

  11. Project 8: Radio Frequency • Electrons moving in a uniform magnetic field emit cyclotron radiation: • Advantages: • Non-destructive measurement of Frequency  energy • Resolution improves over time Dw 1/T  1 eV • Target mass scales with volume • Promising for m(n) < 0.1 eV • Challenges: • Unknownsystematics R&D: Detect the RF signal Understand the resolution Measure the energy spectrum of 83m Kr

  12. Mare: Bolometer Similar Techniquesused also in bb decay and dark matter searches • Bolometer: DT = E/C • Phonons: C ~ T3 (Debye law) at T<< 1K • Event time: DT = E/C e-t/(C/G) • Resolution:sE= (kBT2C)1/2

  13. phase I: DE = 15 eV, mn< 2 eV phase II: DE = 5 eV, mn< 0.2 eV Mare: Phase I • Sensitivity increase with volume: • Arrays of mg-sensors • Up to kg for sub-eVm(n) • R&D on sensor-absorber couplings, pixel design, readout, systematics assessment, etc. • Need: • Higher mass • Lower backgrounds • Better energy resolution Phase II

  14. Neutrino oscillation experiments Technologies Experiments Atmospheric neutrino exp. SuperK,HyperK/UNO,INO,TITAND,… Solar neutrino exp. GALLEX/SAGE, SNO, Borexino, XMASS, … Accelerator neutrino exp. Minos, OPERA, MiniBooNE, T2K, Nova, … Reactor neutrino exp. KamLAND, Daya Bay, Reno, Double Chooz,… • Water Cerenkov detector • Liquid Ar TPC • Liquid Scintillator detector • Sampling detectors for neutrino beams • …

  15. Water Cerenkov detectors • Successful for atmospheric neutrinos, proton decays, supernova, … • Current benchmark set by SuperK: • Mass: 50 kt • PMT coverage: ~40% • Threshold: ~4 MeV • Light yield: 6 PE/MeV • Future ~Mt detector for • Very long baseline neutrino exp. • Proton decays/supernova

  16. Future: LBNE water option • Module spec.: • Total water mass: 138 kt • Fiducial mass: 100 kt • 50000 10” PMT • PMT Coverage: 20% • Light yield: 3 PE/MeV • Threshold: 6MeV • Performance for single rings • Energy resolution: 4.5%/E • vertex resolution: 30cm • Good e/m separation • Multi-rings • Pattern recognition • Event reconstruction 2 100 kt Modules

  17. Technical issues • PMT: under pressure(60m ~ 0.7 Mpa) ? • Water circulation system: • Requirement: Attenuation length > 80 m • Volume: 100 days to fill, > 20 days to circulate 1 volume • Civil • A cavern of 55m diameter, 70m high • Not trivial but also not impossible

  18. Physics reach Performance Similar for 30kt liquid Ar TPC

  19. Even larger water detectors for LBNE, proton decays and supernova 500kton Deep-TITAND (10 Mt) TITAND-I 85m 85m105m4 =3Mt (2.2MtFV) TITAND-II 4 modules  8.8 Mt (400  SK)

  20. GADZOOKS & EGADS ne + p  e+ + n n + p  d + g (2.2 MeV) n + Gd  Gd* + g (8 MeV) • Gd in water: • GdCl3 highly soluble in water • Improve low energy detection capabilities • flavor sensitive • Good for LBNE, supernova, reactor and geo-neutrinos, … • A 200 ton-scale R&D project, EGADS – is under construction at Kamioka t  28 ms(0.1% Gd)

  21. Exotic ideasfor LBNE • Water Cerenkov Calorimeter: • Segmented modules 1  1 10 m3 • two PMTs at each end • Pattern recognition similar to crystal calorimeter Y.F. Wang , NIM. A503(2003)141 M.J. Chen et al., NIM. A562 (2006)214

  22. Liquid Ar TPC: another detector candidate for LBNE • Idea first proposed in 1985 • Dense target • ample Ionization & scintillation: good energy resolution & Low threshold • Excellent tracking and PID capabilities • Digital bubble chamber: • Excellent for discoveries, say ne appearance m decay at rest m.i.p. ionization ~ 6000 e-/mm Time Scintillation light yield 5000 γ/mm @ 128 nm Edrift ~ 500 V/cm Drift direction

  23. ICARUS • Successful After 20 years R&D • Excellent performance • Tracking: sx,y ~ 1mm, sz ~ 0.4mm • dE/dx: 2.1 MeV/cm • PID by dE/dxvs range • Total energy by charge integration • Lessons learned: Impurities (O2, H2O, CO2) should be < 0.1 ppb O2 equivalent 3 ms lifetime (4.5m drift @ Edrift= 500 V/cm) • Two recirculation/purification scheme: Gas & liquid phase Low energy electrons: σ(E)/E = 11% / √E(MeV)+2% Electromagnetic showers: σ(E)/E = 3% / √E(GeV) Hadron shower (pure LAr): σ(E)/E ≈ 30% / √E(GeV)

  24. Successful R&D in Europe, Japan & US Collection view ArgoNeut event in NuMI CNGS nmCC events in ICARUS T600 Drift time coordinate (1.4 m) Wire coordinate (8 m) 250L@KEK

  25. R&D towards LBNE & MicroBooNE • R&D efforts and technical challenges • Long-drift operations(LAr purity) • Membrane cryostat for multi-kiloton TPC • Readout wires or Large electron Multipliers • Cold electronics • MicroBooNE: Combine R&D with physics  A ~100t LAr TPC at Fermilab on-axis Booster beam and off-axis NuMI beam for • MiniBooNE low energy excess • Low energy cross sections

  26. Future: LBNE LAr option • 220kt cryostat • Maximum drift length: 2.5 m  (1.4 ms) • 645000 readout wires (128:1 MUX) • 3mm Wire pitch

  27. Charge readout plane (LEM plane) GAr E ≈ 3 kV/cm LAr Electronic racks Extraction grid E-field E≈ 1 kV/cm Field shaping electrodes Cathode (- HV) UV & Cerenkov light readout PMTs Liquid Argon: other proposals • In Japan: 100kt for JPARK  Okinoshima • In Europe: Modular and Glacier • Modular: • 20 kton proposal at LNGS based on larger 8x8 m2 ICARUS modules • Glacier: • 50-100 kton, Readout: Large GEMs (LEM)

  28. LBNE: LAr or Water ? Water LAr Pros Beautiful image of events Good energy resolution Good PID and pattern recognition High efficiency Requiring smaller cavern and shallow depth Cons Technology for such a volume ? Huge No. of channels Cost ? • Pros • Proven technology • Cost under control • Good energy resolution (slight worse) • Good PID & pattern recognition, particularly at low energies • Cons • Lower efficiency • Larger cavern and deep underground

  29. Liquid scintillator detectors • Successful for reactor and geo-neutrinos • Current benchmark: • Mass: 1 kt • Gd-loading LS: ~200t • Threshold: (0.1-0.3) MeV • Light yield: ~500 PE/MeV • PMT coverage: up to 80% • Future  (10-50)t detector for • LBNE • Supernova/geo-neutrinos • Mass hierarchy • Precision mixing matrix elements KamLAND Daya Bay Borexino

  30. Liquid scintillator: a mature technology • What we care: light yield, transparency, aging, … • Traditionally 3-grediants, say: • Pseudocumene+MO+fluors • But PC suffer from Low flush point, Chemical attacks, High cost, … • Recently 2-grediants, say: LAB + flour • Even more difficult, load metallic elements, Gd, Nd, In, … into the liquid, Known difficult to be stable Currently produced Gd-loaded liquid scintillators

  31. Gd-Loaded LS production at Daya Bay • Chemical procedures • Procurement of high quality materials & Purification of PPO/Gdcl3/TMHA • Gd-compound production & Gd-LS production good quality and stability Gadolinium Choloride Trimethylhemxanoic Acid Linear Alky Benzene Gd-LS production Equipment tested at IHEP, used at Dayabay Fluor GdCl3 TMHA LAB PPO, bis-MSB Gd (TMHA)3 LS Gd-LAB 0.1% Gd-LS

  32. Precision: DayaBayExperiment • Systematic errors < 0.4% • Multiple detector modules + multiple vetos redundancy • Near site data taking this summer, full data taking next summer

  33. Scintillator purification: Borexino Target for pp solar neutrinos, background is the key Water extraction Vacuum distillation Filtration Nitrogen stripping

  34. Future: ~50kt Liquid Scintillator • DayaBayIIFor • Mass hierarchy • Precision mixing matrix elements • Supernova • geo-neutrinos • LENAFor • Supernova • geo-neutrinos • Protondecays • LBNE • HanohanoFor • Supernova • geo-neutrinos • Protondecays • LBNE

  35. The Daya Bay IIproject Daya Bay Daya Bay II Effects of mass hierarchy can be seen from the reactor neutrino energy spectrum after a Fourier transformation • Other main Scientific goals: • Mixing matrix elements • Supernovae/geo-neutrinos L. Zhan et al., PRD78:111103,2008 L. Zhan et. al., PRD79:073007,2009

  36. Technical challenges:liquidscintillator • A typical detector design(R~30m) requires the scintillator attenuation length > 30m • But typical attenuation length of bulk scintillator materials is 10-20 m • How to improve ? Take the 2-grediants solution LAB + fluor as an example : • Use quantum chemistry calculations to identify structures which absorb visible and UV light • Study removing method Linear- Alkyl- Benzene (C6H5 -R) R&D effort by IHEP & Nanjing Uni.

  37. A common issue: photo detection forlargewater/scintillator/LAr detectorslow cost, single PE, low background,… • Large area, low cost MCP • All (cheap) glass • Anode is silk-screened R&D project by Henry Frisch et al.

  38. Other ideas: high QE PMTs • 20” UBA/SBA photocathode PMT from Hamamatzu ? • New ideas: • Top: transmitted photocathode • Bottom: reflective photocathode • additional QE: ~ 80%*40% • MCP to replace Dynodes  no blocking of photons 5”MCP-PMT made in China • ~ 2 improvement on QE Photocathode MCP Anode Test results: Gain: (1-5)105 Noise: < 10 nA QE~(15-20)% Photocathode R&D effort by Y.F. Wang et al

  39. Sampling detectors for neutrino beams T2K near • Absorber: Pb, Fe, … • Sensitive detectors: Emulsion Films(OPERA), Plastic(MINOS) and Liquid(NOVA) Scintillators, RPC(INO), … • Near detector issues: hybrid detector system to monitor neutrino/muon flux & beam profile OPERA 1.25 kt NOVA 25 kt

  40. Indian Neutrino observatory: INO • 50kt magnetized iron plate interleaved by RPC for • Sign sensitive atmospheric neutrinos (stage I) • long baseline neutrino beams • (stage II) • Features: • Far detector at magic baselines: • CERN to INO: 7152 km • JPARC to INO: 6556 km • RAL to INO: 7653 km • Muons fully contained up to 20 GeV • Good charge resolution, B=1.5 T • Good tracking/Energy/time resolution three 17kt modules, each 161614.4m3 150 iron plates, each 5.6 cm thick

  41. 50-100 m 15 m n beam 50-100kT 15 m B=1 T iron (3 cm) + scintillators (2cm) A Magnetized Iron Neutrino Detector for SuperBeams/neutrino factories(MIND) • Goal: CP phase  appearance of “wrong-sign” muons in magnetised iron calorimeter • A generic detector simulation and R&D, Baseline assumed 2000-7500 km • Detector benchmark: • 50-100 kt Far detector • Features: • Segmentation: 3 cm Fe + 2 cm extruded scintillator + WLS fiber + SiPM • 1 T toroidal magnetic field

  42. Physics reach: ultimate dream

  43. Summary • No significant advances of neutrino physics since the discovery of neutrino oscillation  waiting for q13 • A lot of technological progress  preparation for the next generation experiments • larger mass: typically a factor of 10 for all the techniques • Better resolution, precision, signal to background ratio etc • Innovative ideas • New discoveries ahead of us

  44. Thanks 谢谢 Acknowledgements Many Information & slides from relevant talks given at NuFact2010, Neutrino 2010, WIN11, NeuTEL 2011, etc.

More Related