160 likes | 260 Views
First-principles study of spontaneous polarization in multiferroic BiFeO 3. Yoshida lab. Ryota Omichi 2014.05.28 PHYSICAL REVIEW B 71, 014113 (2005). Contents. Introduction Multiferroic Electric polarization Properties of BiFeO 3 Calculation methods(LDA and LDA+U) Results
E N D
First-principles study of spontaneous polarization in multiferroic BiFeO3 Yoshida lab. RyotaOmichi 2014.05.28 PHYSICAL REVIEW B 71, 014113 (2005)
Contents • Introduction • Multiferroic • Electric polarization • Properties of BiFeO3 • Calculation methods(LDA and LDA+U) • Results • Electronic structure • Spontaneous polarization • Summary • Future works
Intro ~multiferroic materials~ Magnetoelectric effect 電気磁気効果 N. A. Spaldin and M. Fiebig,Science309, 391 (2005) Ferroic :: P,M or εare spontaneously formed to produce ferroelectricity, ferro/antiferro-magnetism or ferroelasticity Multiferroic :: co-existence of at least two kinds of ferroic orderings Magnetoelectricity :: Control of P(M) via a magnetic(electric) field
Intro ~ferroic quantities~ Ferroic(M and P) quantities are classified by their symmetry transformations under space and time reversal. 時間反転対称性 空間反転対称性 1’ M -M M M -P P P P 1 M P Ms Ps H Hc Ec E
Intro ~electric polarization~ 自発分極 • Not available within periodic boundary conduction • (depends on unit cell choice) +q -q ー para + + + + + + ー ー ー a ferro origin d (displacement) Spontaneous polarization Calculation of polarization r :: distance ofcharge q :: charge Electric polarization : R. D. King-Smith and David Vanderbilt, Phys. Rev. B 47, 1651(1993)
Intro ~properties of BiFeO3~ • R3c (No167) structure • polarization direction [1 1 1] • Feroelectricity and antiferromagnetism • Formal charge Fe3+ Bi3+ O2- • Ferroelectricity below 1100K(Curie temperature) • Antiferromagnetism below 600K (Neel temperature) • 6 coordinates [1 1 1] Fe O Super exchange interaction : P.W.Anderson, Phys. Rev. 79 350 (1950) J. Kanamori, J. Phys. Chem. Solids 10 87 (1959) Bi
First principles calculations 第一原理計算 Parameter based on experiment ○Predict physicalproperties of materials Input parameter Only atomic numberand atomic position
Calculation methods • Density functional theory • HK theory • Kohn Sham theory v • LDA method Veff(補助場) DFT : P. Hohenberg and W. Kohn,Phys. Rev. 136 B864 (1964) W. Kohn and L. J. Sham, Phys. Rev. 140 A1133 (1965) DFT:密度汎関数理論 LDA:局所密度近似
Calculation methods LDA method • Effectivemethod incondensed matter Error of LDA method • Underestimation lattice constant and band gap • Predicting metallic behavior for materials that are known to be insulators Improvement plan Introduction of Ueff(U-J) • U :: Hubberd parameter • J :: exchange interaction LDA+U : S. L. Dudarev et. Al, Phys. Rev. B 57 1505 (1998)
Results ~DOS~ Majority spin(BiFeO3) (b) Local Fe DOS for both spin channels (c) Local Fe DOS (Ueff=2eV) gap=1.3eV (d) Local Fe DOS (Ueff=4eV) gap=1.9eV Crystal splitting Sprit of Fe 3d states t2g eg
Modern theory of polarization • Ionic contribution • Electronic contribution Electronic contribution • P is calculated by using Berry phase . Bloch function Wannier function Fourier transform Localization of Electron
Electric polarization and Wannier orbital Maximally Localized Wannier Function (MLWF) BaTiO3 Berry phase Wannier center py noncentrosymmetric centrosymmetric Polarization can be written by sum of Wannier centers
Modern theory of polarization Polarization quantum • Physical quantity resulting • from uncertainty of phase Polarization (In the case of Ueff=0)
Switching path Change in polarization P along a path from the original R3c structure through the centrosymmetric cubic structure α=60° Ueff=2eV Polarization quantum = 185.6(μC/cm2)
Summary • BiFeO3 is a materials of unusual interest both as a potentially useful multiferroic and with respect to its fundamental polarization behavior . • Since some of the observed values of polarization can only be explained be switching structures in which the ions change their valence states , such behavior , if experimentally verified might be unique to multiferroics .
Future works FERROELECTRICITY proper Electron degrees of freedom break (IS) improper Ionic displacement. Break inversion symmetry (IS) In order to obtain a large magnetoelectronic coupling, we investigate improper ferroelectrics by first-priniples and model approaches. Spin-order (some AFM or spiral) Spin-order (AFM) Cu2MnSnS4 HoMnO3