290 likes | 310 Views
P. T. O. E. N. I. S. E. N. M. O. 6 x 10. More of that later!. Poly-ominoes. Many-squares. Rules. . Full edge to edge contact only. P. Y. O. E. L. I. S. O. N. M. O. ?. ?. Mon-omino. Domino. Triominoes. 1. 2. 1. Find all of the?. Tetrominoes.
E N D
P T O E N I S E N M O 6 x 10
More of that later! Poly-ominoes Many-squares Rules Full edge to edge contact only.
P Y O E L I S O N M O ? ? Mon-omino Domino Triominoes 1 2 1 Find all of the? Tetrominoes Think systematically! Don’t forget to avoid duplicates. Remember, rotations and reflections are not allowed! 5
P T O E N I S E N M O The pentominoes have lots of interesting properties. Find and draw all of the pentominoes.? Don’t forget to think systematically! 12
P T O E N I S E N M O Alphabet Pentominoes!
P T O E N I S E N M O Some of the pentominoes (like the one shown)can be folded to make open-top boxes. Can you find them all and shade their bases?
P T O E N I S E N M O Find the pentominoes with line/mirror symmetries
P T O E N I S E N M O Find the pentominoes with turn/rotational symmetry.
P T O E N I S E N M O Find the pentominoes with turn/rotational symmetry. ¾ turn ¼ turn Full turn ½ turn Order 2
P T O E N I S E N M O Find the pentominoes with turn/rotational symmetry. Order 2 Full turn ¾ turn ½ turn ¼ turn Order 2
P T O E N I S E N M O Find the pentominoes with turn/rotational symmetry. Order 2 Order 2 Full turn ¾ turn ½ turn ¼ turn Order 4
Do they all have the same perimeter? 12 12 12 10 12 12 12 12 12 12 12 12
3 6 20 10 5 12 4 2 15 30 1 60 How many different size rectangles can be made using 60 squares?
P T O E N I S E N M O 6 x 10 1 of 2339!
P T O E N I S E N M O 1 of 2339 2 of 2339 3 of 2339 1 of 1010 2 of 1010 2 of 368 1 of 368
Build the 12 pentominoes using the 2 cm cubes provided. Use you’re A3 worksheet to try and find a solution of your own!
P T O E N I S E N M O 1 of 2339 2 of 2339 3 of 2339 1 of 1010 2 of 1010 2 of 368 1 of 368
X O E E I S H N M O There are 35 distinct hexominoes. You will need patience and systematic thinking to find all of them.
X O E E I S H N M O Some of the hexominoes can be folded to make closed boxes. They are nets of cubes. Can you find them?
X O E E I S H N M O Hexominoes with line symmetry?
X O E E I S H N M O Hexominoes with rotational symmetry?
X O E E I S H N M O 14 12 14 14 12 14 14 14 14 14 14 14 14 12 14 14 14 14 14 14 14 14 14 14 10 14 12 12 14 12 12 They all have the same area but do they all have the same perimeter? 14 14 14 14
X O E E I S H N M O Possible rectangles with an area of: 15 14 210 units2 1 x 210 2 x 105 3 x 70 5 x 42 It is not possible to cover any of these rectangles with the 35 hexominoes. 6 x 35 7 x 30 10 x 21 14 x 15
P Y O E L I S O N M O Monominoes 1 Dominoes 2 Triominoes 2 Tetrominoes 5 Pentominoes 12 Hexominoes 35 Heptominoes 108 Octominoes 369 A formula for calculating the number of n-ominoes has not been found.
Pentominoes Hexominoes Worksheet 1
P T O E N I S E N M O 6 x 10 2339 solutions 3 x 20 2 solutions Worksheet 3: A3 front(enlarge)
P T O E N I S E N M O 5 x 12 1010 solutions 4 x 15 368 solutions Worksheet 3: A3 reverse(enlarge)