490 likes | 513 Views
Explore the chemical evolution of our universe through nuclear spectroscopy methods, scanning energy states of nuclei and probing nuclear structure. Learn about identifying scattered particles, exciting nuclei, and analyzing de-excitation gamma spectra. This comprehensive guide covers various spectroscopic goals and experimental techniques for studying nuclear states and interactions. Discover the principles behind nuclear reactions, energy transfers, and interpreting particle behaviors in a compelling journey through nuclear spectroscopy.
E N D
Spectroscopy NuclearSpectroscopy Survey Nuclear Spectroscopy
Chemical Evolution of our Universe Nuclear Spectroscopy
Chemical Evolution of our Universe S. Mason. Chemical Evolution (Clarendon Press, 1992), pp. 40-45. Nuclear Spectroscopy
Probes for Nuclear Structure To “see” an object, the wavelength l of the light used must be shorter than the dimensions d of the object (l ≤ d). (DeBroglie: p=ħk=ħ2p/l) Rutherford’s scattering experiments dNucleus~ few 10-15 m Need light of wave length l<1 fm, equivalent energy E Not easily available as light Can be made with charged particle accelerators Nuclear Spectroscopy Scan energy states of nuclei. Bound systems have discrete energy states unbound E continuum
What Structure? - Spectroscopic Goals Bound systems have discrete energy states unbound E continuum Scan energy states of nuclei. • Desired information on nuclear states (“good quantum numbers”): • Energy relative to ground state (g.s.) (Ei,i=0,1,…; E*) • Stability, life time against various decay modes (a, b, g,…) • Electrostatic moments Qj see below • Magnetostaticmoments Mi see below • Angular momentum (nuclear spin) • Parity (=spatial symmetry of quantum y) • Nucleonic (neutron & proton) configuration (e.g., “isospin” quantum #) E* Nuclear Level Scheme + 0 - Nuclear Spectroscopy
Particle and g Spectroscopy • Identify scattered/transmuted projectile & target nuclei, measure m, E, A, Z, I,.. of all ejectiles (particles and g-rays). Individual ormulti detector setups, spectrometers Off-line activation measurements Nuclear Experiment
How to Excite Nuclei: Inelastic Nuclear Reactions Scan the bound nuclear energy level scheme Projectile q Coulomb excitation of rotational motion for deformed targets or vibrations. Target p, n,..transferrxns, e.g., (d, n), (3He,d). Final state is excited Nuclear Spectroscopy Fusion/compound nucleus reactions,Final state is highly excited, thermally metastable
Torque exerted on deformed target excitation of collective nuclear rotations Transfer of angular momentum from relative motion: 1800-q Coulomb Excitation (Semi-Classical) Angular dependence of excitation probability: For small energy losses (weak excitations: spherical Adiabaticity Condition: Fast “kick” will excite nucleus Otherwise adiabatic reorientation of deformed nucleus to minimize energy deformed Vcoul(t) tcoll t t(R0) Excitation probability in perturbation theory: !
z b a Observation of Collective Nuclear Rotations Quadrupole moment (Deviation from spherical nucleus ) b:= quadrupole deformation parameter Deexcitation-Gamma Spectra Measured energies (keV) Mean Field Wood et al.,Heyde
Method: Particle Spectroscopy Bound systems have discrete energy states unbound E continuum (A+a) Excited states E Reaction A(a,b)B* Particle aBeam QuadrupoleMagnet Faraday Cup Populate (excite) the spectrum of nuclear states. Measure probabilities for excitation and de-excitation Reconstruct energy states {Ei,Ii,pi} from energy, linear and angular momentum balance. Obtain structure information from probabilities. Energy Spectrum of Products b Nuclear Experiment Excited States g.s. Counts Particle Energy Eb
Method: Simultaneous Absorption & Emission Spectroscopy pD Reaction 64Ni(p,p’)64Ni* :inelastic proton scattering, absorb E from beam pC 64Nigs+g1+g2+g3+… Scattered Proton Spectrum p-energy loss pB pA Deexcitation g Spectrum Nuclear Spectroscopy g
Example: Inelastic Particle Scattering 238U+d 238U*+d’ Scattered deuteron kinetic energy spectrum E’d = E’d (qd , Ed) Deexcitation-g Spectrum Coincident g cascades HPGe Nuclear Spectroscopy HPGe Beam HPGe Coincident g cascades indicate nuclear band structure (rotational, vibrational,...)
Measuring Energy Transfer: The Q Value Equation How to interpret energies of scattered particles: W. Udo Schröder, 2008 Measure kinetic energy E3 vs. angle q3 to determine reaction Q value. Predict energies of particles at different angles as functions of Q.
Transmutation in Compound Nucleus Reactions Use mass tables to calculate Q Excited levels of ER EER* g.s. Decay of CN populates states of the “evaporation residue” nucleus Nuclear Spectroscopy Q
Technology: Typical Setups Particle Experiments DE-E/TOF Setup Simultaneous measurement of time of flight, specific energy loss and residual energy of particles E, Z, A Particle Particle Total Energy Time of Flight = Total Energy = ToF DE-E Setup Simultaneous measurement of specific energy loss DE and residual energy E of particles E, Z, (A) Nuclear Spectroscopy E Residual Energy Modified, after K.S. Krane, Introduction to Nuclear Physics, Wiley&Sons, 1988
Particle ID with Detector Telescopes 20Ne + 12C @ 20.5 MeV/u - qlab = 12° Na Ne F O N C B Be Li He Particle ID (Z , A, E) Specific energy loss, spatial ionization density, TOF SiSiCsI Telescope (Light Particles) Si TelescopeMassive Reaction Products DE-E Telescope DE E-DE Nuclear Spectroscopy
THE CHIMERA DETECTOR Laboratori del Sud, Catania/Italy CHIMERA characteristic features REVERSE EXPERIMENTAL APPARATUS BEAM 688 telescopes TARGET 30° Nuclear Spectroscopy 1° 1m Chimeramechanical structure
Technology in g spectroscopy Greta HPGe Array Realistic coverage: Ω/4p=0.8 Spatial resolution: ∆x=2 mm GRETA Detector Configuration Two types of irregular hexagons, 60 each, 3 crystals/cryostat= 40 modules Detector – target distance = 15 cm $750k GRETINA Nuclear Spectroscopy
g-Ray Tracking with HPGe Detector Array Use Compton scattering laws to identify & track interactions of all g’s. Conventional method requires many detectors to retain high resolution and avoid summing. Nuclear Spectroscopy I.-Y. Lee, LBNL, 2011
Characteristic Examples of Level Schemes Collective vibrations: O+g.s., even spins & parity, regular sequence with bunching of (0+,2+,4+) triplet Collective rotations: Regular quadratic sequence 0+,2+,4+,…. Only even or only odd spins, DI=2, uniform parity. Single-particle spectra: Irregular sequence, half-integer spins, various parities. Nuclear Spectroscopy
Characteristic Level Schemes-Light Nuclei Different densities of states. Similarities in energies, spin, parity sequence for mirror nuclei: (N, Z)=(a, b)=(b,a)mirror Nuclear Spectroscopy
Gamma Decay of Isobaric Analog States For same T, wfs for protons and neutrons are similar “Mirror Nuclei” 19Ne and 19F W.u. Gamma Decay
Examples of Level Schemes: SM vs. Collective Nuclear Spectroscopy
Example of g –particle Spectroscopy Nuclear Spectroscopy
241Am 5.378 MeV 5.433 MeV 159 5.476 MeV 120 103 5.503 MeV 76 110 5.546 MeV 60 100 33 90 0 g Energy (keV) 80 237Np 70 60 50 40 30 a Energy (keV) - 5 MeV 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 Example a-Decay of 241Am, subsequent g emission from daughter Find coincidences (Ea, Eg) 9 g-rays, 5 a Principles Meas
241Am 5.378 MeV 5.433 MeV 159 5.476 MeV 120 103 5.503 MeV 76 110 5.546 MeV 60 100 33 90 0 g Energy (keV) 80 237Np 70 60 50 40 30 a Energy (keV) - 5 MeV 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 Example a-Decay of 241Am, subsequent g emission from daughter Find coincidences (Ea, Eg) 9 g-rays, 5 a Principles Meas
241Am 5.378 MeV 5.433 MeV 159 5.476 MeV 120 103 5.503 MeV 76 110 5.546 MeV 60 100 33 90 0 g Energy (keV) 80 237Np 70 60 50 40 30 a Energy (keV) - 5 MeV 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 Example Principles Meas
241Am 5.378 MeV 5.433 MeV 159 5.476 MeV 120 103 5.503 MeV 76 110 5.546 MeV 60 100 33 90 0 g Energy (keV) 80 237Np 70 60 50 40 30 a Energy (keV) - 5 MeV 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 Example Principles Meas
241Am 5.378 MeV 5.433 MeV 159 5.476 MeV 120 103 5.503 MeV 76 110 5.546 MeV 60 100 33 90 0 g Energy (keV) 80 237Np 70 60 50 40 30 a Energy (keV) - 5 MeV 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 Example Principles Meas
241Am 5.378 MeV 5.433 MeV 159 5.476 MeV 120 103 5.503 MeV 76 110 5.546 MeV 60 100 33 90 0 g Energy (keV) 80 237Np 70 60 50 40 30 a Energy (keV) - 5 MeV 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 Example Principles Meas
241Am 5.378 MeV 5.433 MeV 159 5.476 MeV 120 103 5.503 MeV 76 110 5.546 MeV 60 100 33 90 0 g Energy (keV) 80 237Np 70 60 50 40 30 a Energy (keV) - 5 MeV 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 Example No a-g coincidences ! must be g.s. transition Principles Meas
241Am 5.378 MeV 5.433 MeV 159 5.476 MeV 120 103 5.503 MeV 76 110 5.546 MeV 60 100 33 90 0 g Energy (keV) 80 237Np 70 60 50 40 30 a Energy (keV) - 5 MeV 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 Example Principles Meas
Exercises Nuclear Spectroscopy
Exercises: Nuclear Electrostatic Moments Consider a nucleus with a homogeneous, axially symmetric charge distribution • Show that its electric dipole moment Q0 is zero. • Assume for the charge distribution a homogenously charged rotational ellipsoid with semi axes a and b, given by . Show that 3. From the measured 242Pu and 244Pu g spectra determine the deformation parameters b of these two isotopes. Nuclear Deformations
Alpha-Gamma Spectroscopy • 251Fm247Cf Nuclear Deformations
Spectroscopy • Theoretical Tools Nuclear Spectroscopy
z Spectroscopic vs. Intrinsic Quadrupole Moment I≠0: Transformation body-fixed to lab system mI=I q Any orientation quadratic dependence of Qz on mI Gamma Decay “The” quadrupole moment
Electromagnetic Radiation Protons in nuclei = moving charges emits electromagnetic radiation, except if nucleus is in its ground state! Monopole ℓ= 0 Heinrich Hertz Propagating ElectricDipole Field Dipole ℓ = 1 Gamma-Gamma Correlations Quadrupole ℓ =2 Point Charges NuclearCharge Distribution E. Segré: Nuclei and Particles, Benjamin&Cummins, 2nd ed. 1977
Nuclear Electromagnetic Transitions Conserved: Total energy (E), total angular momentum (I) and total parity (p): Illustration conserved spatial symmetry Ip2+ Ip2+ g Ei 1- 1- Ef 0+ 0+ Gamma-Gamma Correlations Initial Ni spatial symmetry retained in overall combination Nf+g Consider often only electric multipole transitions.Neglect weaker magnetic transitions due to changes in current distributions.
z mi mf Selection Rules for Electromagnetic Transitions Conserved: Total energy (E), total angular momentum (I, Iz), total parity (p): Quantization axis : z direction.Physical alignment of I possible (B field, angular correlation) Coupling of Angular Momenta mg Gamma-Gamma Correlations
Transition Probabilities: Weisskopf’ss.p. Estimates Consider single nucleon in circular orbit (extreme SM) Gamma Decay WeisskopfEstimates
Weisskopf’s Eℓ Estimates Experimental E1:Factor 103-107 slower than s.p. WE Configurations more complicated than s.p. model, time required for rearrangement Experimental E2:Factor 102 faster than s.p. WE Collective states, more than 1 nucleon. Experimental Eℓ (ℓ>2):App. correctly predicted. Gamma Decay T1/2 for solid lines have been corrected for internal conversion.
Weisskopf’s Mℓ Estimates Experimental Mℓ:Several orders of magnitude weaker than Eℓtransitions. Gamma Decay T1/2 for solid lines have been corrected for internal conversion.
Isospin Selection Rules Reason: n/p rearrangements multipole charge distributions photon interacts only with 1 nucleon (t = 1/2) DT = 0, 1 Example E1 transitions: Enhanced (collective) E2, E3 transitions DT = 0 Collective (rot or vib) WF does not change in transition. Gamma Decay
Gamma Decay of Isobaric Analog States For same T, wfs for protons and neutrons are similar “Mirror Nuclei” 19Ne and 19F W.u. Gamma Decay
z e |e|Z q Monopoleℓ = 0 Dipole ℓ = 1 Quadrupole ℓ =2 Electrostatic Multipole (Coulomb) Interaction symmetry axis QuadrupoleQ ≠0, indicates deviation from spherical shape Different multipole shapes/ distributions have different spatial symmetries Point Charges Nuclear Deformations Nuclear charge distribution
e,m Magnetization: Magnetic Dipole Moments Moving charge e current density j vector potential , influences particles at via magnetic field =0 Nuclear Spins mLoop = I x A= current x Area(inside) current loop:
End Spectroscopy Nuclear Spectroscopy
Lecture Plan Intro to Nuclear Structure Nuclear Spectroscopy