1 / 40

Nonlinear Interval Finite Elements for Structural Mechanics Problems

Nonlinear Interval Finite Elements for Structural Mechanics Problems. Rafi Muhanna School of Civil and Environmental Engineering Georgia Institute of Technology, Atlanta, GA 30332-0355, USA Robert L. Mullen Department of Civil and Environmental Engineering

kumiko
Download Presentation

Nonlinear Interval Finite Elements for Structural Mechanics Problems

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Nonlinear Interval Finite Elements for Structural Mechanics Problems Rafi Muhanna School of Civil and Environmental Engineering Georgia Institute of Technology, Atlanta, GA 30332-0355, USA Robert L. Mullen Department of Civil and Environmental Engineering University of South Carolina, Columbia, SC 29208 USA M. V. Rama Rao VasaviCollege of Engineering, Hyderabad - 500 031 INDIA REC 2012, June 13-15, 2012, Brno, Czech Republic

  2. Outline • Interval FEM development • Barriers to non-linear FEM Improved interval sharpness for secondary quantities Loss of sharpness in iterative updates • Results • Conclusions

  3. Finite Element Analysis • Approximate methods for solving PDE. • Reduces continuum problem into a discrete system of equations. • Interval extension to Finite Element methods have been developed by Muhanna, Zhang, Rao, Modares, Berke, Qiu, Elishakoff, Pownuk, Neumaier, Dessombz, Moens, Mullen and others.

  4. We will use a two dimensional truss as an exemplar for the development of non-linear interval finite element methods

  5. Required Improvements to Linear Interval Finite Element Methods • Sharp solutions to systems of equations • Improve sharpness of Secondary quantities (stress/strain). • Prevent accumulation of errors in iterative correctors

  6. Outline • Interval FEM development • Barriers to non-linear FEM Improved interval sharpness for secondary quantities Loss of sharpness in iterative updates • Results • Conclusions

  7. Error in secondary quantities Conventional Finite Element Secondary quantities such as stress/strain calculated from displacement have shown significant overestimation of interval bounds

  8. Use constraints to augment original variational • Indirect terms • Direct terms

  9. Does it work?

  10. Does it work?

  11. Outline • Interval FEM development • Barriers to non-linear FEM Improved interval sharpness for secondary quantities Loss of sharpness in iterative updates • Formulation • Results • Conclusions

  12. Nonlinear equation solving Interval Style • Extend Newton methods to Interval systems • Alternative methods with sharper results

  13. Interval Modified Newton-Raphson Method

  14. The ‘out of balance’ force vector can now be introduced as

  15. Containment as a stopping criterion

  16. count = 1: countmax • Kc(U) U = P • U = K-1 (U) P : Obtain solution based on interval methods discussed. • for e = 1: number of elements • max (σ) = a×sup(ε)+b×(sup(ε))3 • max(Es) = max (σ ) / sup (ε (e)) • min (σ) = a×inf(ε)+b×(inf(ε))3 • min(Es) = min (σ ) / inf (ε (e)) • Es (e) = infsup (min (Es), max (Es)) • end : of loop on elements

  17. Kc: update K with the new values of Es end : of loop on count For the stopping criterion the sum of the L1 norms of the following relative change of the secant lower and upper bounds is required to be less than a specified small value

  18. Outline • Interval FEM development • Barriers to non-linear FEM Improved interval sharpness for secondary quantities Loss of sharpness in iterative updates • Results • Conclusions

  19. Example of nonlinear interval Monte Carlo • Non-linear IFEM can be used to construct Probability bounds using interval Monte Carlo

  20. Example problem 1

  21. Nonlinear Parameters • Loading from Pbox • Lognormal bounds • Cov=.1 +/- 12.5% Secant formulation

  22. Horizontal displacement

  23. Summary • Nonlinear analysis of structures with interval parameters for loading and stiffness parameters can be calculated with reasonably sharp bounds on interval response quantities. • Computational effort required is similar to non-interval problems. Method can be used for Monte Carlo simulations.

  24. Rene Magritte, Clairvoyance, 1936

More Related