190 likes | 392 Views
Finite Elements in Electromagnetics 4. Wave problems. Oszkár Bíró IGTE, TU Graz Kopernikusgasse 24Graz, Austria email: biro@igte.tu-graz.ac.at. Overview. Maxwell‘s equations Resonators Filters Wave propagation in free space. Maxwell‘s equations. Time harmonic case. Resonators. G E :.
E N D
Finite Elements in Electromagnetics4. Wave problems Oszkár Bíró IGTE, TU Graz Kopernikusgasse 24Graz, Austria email: biro@igte.tu-graz.ac.at
Overview • Maxwell‘s equations • Resonators • Filters • Wave propagation in free space
Maxwell‘s equations Time harmonic case
Resonators GE: GH:
Resonators, H-formulation A problem without excitation: Eigenvalue problem
Resonators, finite element Galerkin equations for H i = 1, 2, ..., n Generalized algebraic eigenvalue problem
Filters GH: GE: GH:
Filters, E-formulation A problem with excitation: Driven problem
Filters, finite element Galerkin equations for E i = 1, 2, ..., n conditioning of [A] strongly depends on frequency
Filters, finite element Galerkin equations for A,V (2) i = 1, 2, ..., n(e) i = 1, 2, ..., n(n)
Filters, finite element Galerkin equations for A,V (3) [A] is singular and its conditioning depends less on frequency R. Dyczij-Edlinger and O. Biro, "A joint vector and scalar potential formulation for driven high frequency problems using hybrid edge and nodal finite elements," IEEE Transactions on Microwave Theory and Techniques, vol. 44, pp. 15-23, January 1996.
Wave propagation in free space • Finite element method needs closed domain • Modeling of infinite space necessary • Perfectly matched layers (PMLs) PML
y PML x z PMLs Nonphysical material properties No reflection on the interface between air and PML