200 likes | 382 Views
Constructing Verifiable Random Functions for Large Input Spaces. Susan Hohenberger. Brent Waters. Pseudo Random Functions [GGM84]. K. ?. F K ( ¢ ). Applications: Sym Key Enc Removing State…. Constructions: OWF -- GGM/HILL DDH –NR97. 2. Verifiable Random Functions [MRV99]. K.
E N D
Constructing Verifiable Random Functions for Large Input Spaces Susan Hohenberger Brent Waters
Pseudo Random Functions [GGM84] K ? FK(¢) • Applications: • Sym Key Enc • Removing State… • Constructions: • OWF -- GGM/HILL • DDH –NR97 2
Verifiable Random Functions [MRV99] K PK FK(¢) FK(x), ¼x FK(x’), ¼x’ … 3
VRFs Deterministic • Setup(1¸) ! K, PK • Evaluate(K, x 2 {0,1}n) ! FK(x) • Prove(K, x 2 {0,1}n) !¼x • Verify(PK, (x,y,¼) ) = {T,F} Non-Interactive!
Security: Pseudorandomness K PK ? FK(x1) x1 FK(x2) x2 FK(x3) x3 b FK(x*) or R x* b’ AdvA = Pr[b’=b]-1/2 5
Security: Uniqueness K PK • Impossible: • Exists (x,y1, y2, ¼1,¼2) • y1 y2 • Ver(PK,x,y1,¼1) = T Ver(PK,x,y2,¼2) = T 6
The Technical Challenge • No Interaction • No Common Ref. String • No Randomness (in output)
Proof by Partitioning x1 x2 … xQ x*(challenge input) Attacker Input Space = {0,1}n Simulator Query Space Challenge Space
“All-But-One” Proofs Input Space = {0,1}n Simulator Guess x* ~ (1/2)n Security Loss Short Input Spaces MRV99, DY05 (2n Time-blowup), ACF09 L02 Interactive Assumption – (Partition Changes) Extend Input: CRHF H:{0,1}*! {0,1}n (Complexity Leveraging)
Goal: Large Input Space (& Poly Reductions) Input bits =n, Queries = Q Similar to IBE BB04 =>W05 ~1/Q fraction
Bilinear Map Overview G : multiplicative of prime order p. Bilinear mape: GG GT • e(ga, gb) = e(g,g)ab a,bZp, gG
Construction (Similar to L02, ACF09) • Setup(1¸) ! K= (u’,u0,u1,…,un) PK = (g,h, U’=gu’ , U0= gu0,…, Un=gun ) • FK(x)= e( gt, h ) t = u’u_0 j=1,…,n ujxj • Prove(K, x 2 {0,1}n) ¼=(¼0,…,¼n) ¼i=gu’zi zi = u’ u0j=1,…,i ujxj • Verify(PK, (x,y,¼) ) “Stepping Stone” w/ PK, ¼i * Changed from Conference Proceedings
Proof Overview: Hidden Programming Input bits =n, Queries = Q k DDHE Assumption: Given: g,h,ga, ga2,…, gak-1, , gak+1, …, ga2k Distinguish: e(g,h)ak from R “Hole” ~1/Q fraction Use k=4Q(n+1)
Partitioning and Aborts ID Space Query Space Challenge Space Abort and try again Simulator Attacker x1 x2… … xQ x*(challenge ID)
Proof Sketch (leaving out randomization) k=4Q(n+1) DDHE Assumption: Given: g,h,ga, ga2,…, gak-1, , gak+1, …, ga2k Choose: r0,…,rn2 Zp , t 2 [0,n] C(x) = 4Q(1+t)+r0+j 2 X rj Setup: PK = (g,h, U’=gak , U0= ga4Q(t)+r0, Uj=garj ) FK(x) = e(gaC(x),h) Query: C(x) 0 mod 4Q Challenge: C(x) = k
Other Details & Improvements • Precise Analysis (Similar to W05) • “Artificial Abort” • HK08 Slightly tighter proofs • BR09 Worse Assumption Here
Comparisons * DY05, MRV99 : Short Proofs
Summary & Future • Large Input Spaces • Hidden Compression • Useful: Look for high level similarities • Open: Static Assumptions • New: Hierarchical VRF • Why? • Are we stuck with exponential loss?