1 / 21

Binomial Heaps

Binomial Heaps. i. B k-1. B k-1. Binomial trees: B 0 has a single node B k : Ex. B 1. B 2. B 3. Lemma1 For the binomial tree B k , 1. there are 2 k nodes, 2. the height if the tree is k , 3. there are exactly nodes at depth i for i= 0, 1, … ., k,

kyle
Download Presentation

Binomial Heaps

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Binomial Heaps

  2. i Bk-1 Bk-1 • Binomial trees: B0 has a single node Bk: Ex B1 B2 B3

  3. Lemma1 For the binomial tree Bk, 1. there are 2k nodes, 2. the height if the tree is k, 3. there are exactly nodes at depth i for i= 0, 1, …., k, 4. the root has degree k, which is greater than that of any other node; moreover if the children of the root are numbered from left to right by k-1, k-2, …, 0, child I is the root of a subtree Bi Proof: 1) By induction, 2k-1 + 2k-1 = 2k 2) By induction, 1 + (k-1) = k 3) , by induction

  4. Corollary: The maximum degree of any node in an n-node binomial tree is lg(n) • Binomial heaps: H: a set of binomial trees satisfying the following: 1. Each binomial tree in H is heap-ordered: the key of a node is greater than or equal to the key of its parent 2. There is at most one binomial tree in H whose root has a given degree Note: By 2. an n-node binomial heap H consists of at most binomial trees

  5. Representation of binomial heaps 6 1 (a) head[H] 10 12 25 8 14 29 11 18 17 38 27

  6. / / / 10 1 6 0 2 3 / / 12 25 8 14 29 1 2 1 0 / / / / 18 11 17 38 0 1 0 0 / / / / / 27 0 / / (b) head[H] p key degree child sibling

  7. Operations on binomial heaps • Creating a new binomial heap • Finding the minimum key • Uniting 2 binomial heaps Time: O( lg n)

  8. Binomial-Heap-Merge Bk-1 Bk-1 Y, z : Bk-1 trees

  9. 6 (a) head[H1] head[H2] 3 18 7 15 12 37 29 10 44 8 25 28 33 48 22 17 31 30 23 41 50 24 32 45 55 Binomial-Heap-Merge Output of sorted degree x next-x 7 6 12 (b) head[H] 18 15 3 25 29 10 44 8 37 28 33 48 22 17 31 30 23 41 Case 3 50 24 32 45 55

  10. sibling[next-x] next-x x 6 7 (c) head[H] 15 12 3 29 10 44 8 37 25 28 33 18 48 22 17 31 30 23 41 Case 2 50 24 32 45 55 x prev-x next-x 7 6 (d) head[H] 15 12 3 29 10 44 8 37 28 33 18 25 48 22 17 31 30 23 41 Case 4 50 24 32 45 55

  11. x next-x prev-x 6 (d) head[H] 3 15 12 29 10 44 8 28 33 7 37 18 48 22 17 31 30 23 41 25 Case 3 50 24 32 45 55 prev-x x next-x (d) head[H] 12 3 6 29 10 44 8 18 7 37 15 48 22 17 31 30 23 28 33 25 Case 1 50 24 32 45 41 55

  12. Case1

  13. Case 3 Case 4

  14. next-x (a) prev-x x sibling[next-x] prev-x x next-x …. …. …. …. b a c d b a c d Case 1 Bk Bl Bk Bl next-x (b) prev-x x sibling[next-x] prev-x x next-x …. …. …. b a c d b a c d Case 2 Bk Bk Bk Bk Bk Bk

  15. c b b c next-x (c) prev-x x sibling[next-x] prev-x x next-x …. …. …. b a c d a d Case 3 Bk Bk Bl Bk Bl Bk Bk+1 next-x prev-x x (d) prev-x x sibling[next-x] …. …. …. b a c d a d Case 4 Bk Bk Bk Bk Bl Bk Bk+1

  16. Insert a node • Extracting the node with minimum key z x y  x

  17. (a) head[H] 1 37 10 16 12 25 6 41 28 13 26 29 18 23 8 14 77 42 38 17 11 27 x 1 (b) head[H] 37 10 16 12 25 6 41 28 13 26 29 18 23 8 14 77 42 38 17 11 27

  18. 12 12 18 18 16 16 6 6 26 26 29 29 23 23 8 8 14 14 37 10 42 42 38 38 17 17 11 11 27 27 41 28 13 (d)head[H] 77 25 (c) head[H] 37 head[H’] 10 25 41 28 13 77

  19. Decreasing a key • Deleting a key

  20. 12 12 18 18 6 6 29 29 8 8 14 14 37 37 10 38 38 17 17 11 11 27 27 41 41 28 13 77 (a)head[H] 25 z 16 y 7 23 42 (b)head[H] 25 z 10 y 28 13 7 16 23 77 42

  21. 12 18 37 41 (c)head[H] z 25 6 y 29 8 14 7 38 17 11 28 13 10 27 16 23 77 42

More Related