1 / 22

A Similarity Skyline Approach for Handling Graph Queries - A Preliminary Report

A Similarity Skyline Approach for Handling Graph Queries - A Preliminary Report. Katia Abbaci† Allel Hadjali † Ludovic Liétard ‡ Daniel Rocacher † † IRISA/ENSSAT, University of Rennes1 {Katia.Abbaci , Allel.Hadjali, Daniel.Rocacher}@enssat.fr ‡ IRISA/IUT, University of Rennes1

kylia
Download Presentation

A Similarity Skyline Approach for Handling Graph Queries - A Preliminary Report

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. A Similarity Skyline Approach for Handling GraphQueries - A Preliminary Report Katia Abbaci† Allel Hadjali† Ludovic Liétard‡ Daniel Rocacher† †IRISA/ENSSAT, University of Rennes1 {Katia.Abbaci, Allel.Hadjali, Daniel.Rocacher}@enssat.fr ‡IRISA/IUT, University of Rennes1 Ludovic.Lietard@univ-rennes1.fr

  2. Outline • Introduction • Background: • Skyline Query • Graph Query • Graph Similarity Measures • Graph Similarity Skyline • Refinement Graph Similarity Skyline • Summary and Outlook GDM 2011

  3. Introduction (1/3) Context: • Graphs: Modeling of structured and complex data • Application Domains: • Medicine, Web, Chemistry, Imaging, XML documents, Bioinformatic,... Chemistry Web Imaging Medicine GDM 2011

  4. Introduction (2/3) Main: • Search Problem of similar graphs to graph query • Existing approaches: a single similarity measure • Several methods for measuring the similarity between two graphs: • Method limited to an application class • No method fits all GDM 2011

  5. Introduction (3/3) Motivations: • Model for different classes of applications • Model incorporating multiple features Contributions: • Graph Similarity Skyline in order to answer a graph query: optimality in the sense of Pareto • A Refinement Method of Skyline based on diversity criterion among graphs GDM 2011

  6. SkylineQuery • Identification of interesting objects from multi-dimensional dataset • p = (p1, …, pm),q = (q1, …, qm): multidimensional objects p Pareto dominatesq, denoted pq, iff: • on each dimension, 1 ≤ i ≤ m, pi ≤ qi • on at least one dimension, pj < qj GDM 2011

  7. SampleSkylineQuery • Find a cheap hotel and as close as possible to the downtown: H2 H2 H6 H6 Skyline = {H2, H4, H6} GDM 2011 Tab. 1 –Sample of hotels

  8. Graph Query • Twocategories of graph queries: • Graph containmentsearch: q: a query, D = {g1, …, gn} a GDB • Subgraphcontainmentsearch •  Retrieve all graphs gi of D suchthatq ⊆ gi • Supergraphcontainmentsearch  Retrieve all graphs gi of D suchthatq ⊇ gi • Graph similaritysearch: Retrieve structurally similar graphs to the query graph GDM 2011

  9. Graph SimilarityMeasures • Several processing methods of graph similarity: • Edit Distance (DistEd) • Maximum common subgraph based distance (DistMcs) • Graph union based distance (DistGu) GDM 2011

  10. Graph SimilarityMeasures Tab. 2 –SimilarityMeasures GDM 2011

  11. Edit Distance: example • Transformation of g into g’: • deletion of the adge (d, e), • re-labeling the adge (a, d) from 1 to 4, • re-labeling the node d with e, • insertion of the adge (a, f) with the label 1. • Use of the uniform distance: f 4 4 4 4 4 e e e e e e e e e e 1 6 6 6 6 6 6 6 6 6 6 a e e e e e e e d d d 4 4 4 4 4 1 4 4 1 4 5 5 5 5 5 5 5 5 5 5 a a a a a a a a a a Fig. 3 –Example of labeled graphs Fig. 3 –Example of labeled graphs Fig. 3 –Example of labeled graphs Fig. 3 –Example of labeled graphs Fig. 3 –Example of labeled graphs 2 2 2 2 2 f f f f f f f f f 2 2 2 2 2 1 1 1 1 1 c c c c c c c c c c 3 3 3 3 3 3 3 3 3 3 a a a a a a a a a g g g g g g’ g’ g’ g’ g’ GDM 2011

  12. Distances based on Mcs and Gu: example • Identification of the size of • Computation of Mcs-based distance: • Computation of Gu-based distance: 4 4 e e e e 6 6 6 6 e e d d 4 4 1 1 5 5 5 5 a a a a Fig. 4 –Example of labeled graphs Fig. 4 –Example of labeled graphs 2 2 f f f f 2 2 1 1 c c c c 3 3 3 3 a a a a g g g’ g’ GDM 2011

  13. Graph Similarity Skyline (1/2) • Graph compound similarity between two graphs: a vector of local distance measures GDM 2011

  14. Graph Similarity Skyline (2/2) • q: a query, D = {g1, …, gn} a GDB • For i = 1 ton, do: • Compare • Extract the Graph Similarity Skyline (GSS): • Similarity-Dominance Relation • ∀ i ∈ {1, ..., d}, Disti(g, q) ≤ Disti(g’, q), • ∃ k ∈ {1, ..., d}, Distk(g, q) < Distk(g’, q). GDM 2011

  15. Illustrative Example (1/2) 1 4 1 1 1 1 1 1 1 4 e e e e e e e e e e e e e e e e e e 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4 4 4 2 4 4 4 2 4 2 4 4 2 4 2 2 2 e 2 e e e e e d e e e e e e d 1 1 3 3 1 2 3 3 1 2 3 1 3 1 5 5 5 5 5 5 5 5 3 5 5 5 a a a a a a a a a a a a 5 5 3 5 f f d d f f f f d f d f 2 2 2 2 1 1 2 1 1 1 2 2 2 2 2 2 2 2 2 1 1 1 1 5 2 1 2 5 c c c c c c c c c a a c a a 3 3 3 3 3 3 3 3 3 3 3 3 3 3 f f a a a a a a a a a a a a 3 3 f f a a a a g1 g4 g2 g3 g6 q g5 g7 q g6 g5 g3 g4 g2 g1 g7 Fig. 6– Graph databaseD and graph queryq Fig. 6 – Graph databaseD and graph queryq Tab. 3 – Information about |Mcs(gi, q)| c c c c c c GDM 2011

  16. Illustrative Example (2/2) • Computation of GCS(gi,q), for i= 1 to 7, do: g1 g5 g1 Tab. 4 – Distance Measures GSS(D, q) = {g1, g4, g5, g7} GDM 2011

  17. Refinement of Graph Similarity Skyline (1/3) • Large Skyline • Need k dissimilar answers • Solution: diversity criterion • Extract a subset (S) of size k with a maximal diversity Provide the user with a global picture of the whole set GSS GDM 2011

  18. Refinement of Graph Similarity Skyline (2/3) • Diversity of a subsetS of size kis: : diversity in the ith dimension of the subsetS s. t.: GDM 2011

  19. Refinement of Graph Similarity Skyline (3/3) • RefinementAlgorithm: • For j = 1 to , enumerate , with • For i = 1 to d, rank-order all Sj in decreasingwayaccording to theirdiversity Let be the rank of Sj w. r. t. the ith dimension: • : the best diversity value • : the worstdiversity value • EvaluateSj by: • Extract : GDM 2011

  20. 1 1 e e Illustrative Example 6 6 2 4 2 e e 1 1 3 5 5 2 2 1 1 • Return the 2 best graphs: a 3 a 3 a f a f g5 g7 f 4 e e 6 6 e d 4 1 2 Fig. 8 – The skyline GSS c c 5 5 a a 2 f 1 c c 3 3 a a g4 g1 GDM 2011

  21. Summary and Outlook • Skyline approach for searching graphs by similarity • Extraction of all DB graphs non-dominated by any other graph • Preserving information about the similarity on different features • Selection of the subset of graphs with maximal diversity from the skyline • Implementation: step to demonstrate the effectiveness of the approach on a real database • Investigation of other similarity measures GDM 2011

  22. Thankyou Questions ?

More Related