270 likes | 483 Views
Multiples Waveform Inversion. Dongliang Zhang and Gerard Schuster King Abdullah University of Science and Technology 12/06/2013. Outline. Motivation Multiples contain more information. Theory Algorithm of MWI and generation of multiples. Numerical Example Test Marmousi model.
E N D
Multiples Waveform Inversion DongliangZhang and Gerard Schuster King Abdullah University of Science and Technology 12/06/2013
Outline Motivation Multiples contain more information Theory Algorithm of MWI and generation of multiples Numerical Example Test Marmousi model Conclusions
Outline Motivation Multiples contain more information Theory Algorithm of MWI and generation of multiples Numerical Example Test Marmousi model Conclusions
Motivation multiples primary Multiples : wider coverage, denser illumination FWI MWI
Motivation Recorded data (primary + multiples) Impulsive wavelet Recorded data multiples Multiples waveform inversion vs full waveform inversion Natural source
Outline Motivation Multiples contain more information Theory Algorithm of MWI and generation of multiples Numerical Example Test Marmousi model Conclusions
Theory Algorithm of MWI 1. Misfit function 2. Gradient of data residual Multiples RTM
Algorithm of MWI Forward propagation Backpropagation 3. Update velocity/slowness
MWI Workflow Calculate multiples to get the multiples residual Multiples RTM to get gradient of misfit function Update the velocity Number of iterations >N No Yes Stop
GenerateMultiples homogeneous Step 1 direct propagation Pd+Md Line source (P +M) heterogeneous Mr reflected propagation Step 2 direct propagation Line source (P +M) Pd+Md heterogeneous homogeneous Step 3 Mr= (Pd+Md ) +Mr - (Pd+Md)
VirtualSource (P+M) (Pd+Md)+Mr (Pd+Md) Mr (multiples) 5.5 T (s) 0 0 X (km) 4 0 X (km) 4 0 X (km) 4 Example 5.5 T (s) 0 2 Z (km) 0 water homogeneous
Recorded data Multiples residual Conventional migration Multiples migration Gradient of MWI Impulsive wavelet Data residual Yike Liu (2011)
Outline Motivation Multiples contain more information Theory Algorithm of MWI and generation of multiples Numerical Example Test Marmousi model Conclusions
Numerical Example Initial Velocity Model 1.5 km/s 5.5 2 Z (km) 0 0 X (km) 4 True Velocity Model 1.5 km/s 5.5 2 Z (km) 0
Numerical Example Tomogram of MWI 1.5 km/s 5.5 2 Z (km) 0 0 X (km) 4 Tomogram of FWI 1.5 km/s 5.5 2 Z (km) 0
Numerical Example True True FWI FWI MWI MWI
Numerical Example RTM Image Using FWI Tomogram 2 Z (km) 0 0 X (km) 4
Numerical Example RTM Image Using MWI Tomogram 2 Z (km) 0 0 X (km) 4
Numerical Example Common Image Gather Using FWI Tomogram
Numerical Example Common Image Gather Using MWI Tomogram
Numerical Example Model Residual 11 Res (%) 14 MWI is more accurate than FWI FWI MWI 1 Iterations 100 Data Residual 20 Res (%) 100 Convergence of MWIis faster than that of FWI FWI MWI
Numerical Example FWI Gradient for One Shot MWI Gradient for One Shot 0 X (km) 4
Outline Motivation Multiples contain more information Theory Algorithm of MWI and generation of multiples Numerical Example Test Marmousi model Conclusions
FWI MWI FWI MWI Conclusions • Source wavelet is not required • Illuminations are denser • MWI converge faster than FWI in test on Marmousimodel • Tomogram of MWI is better than that of FWI in test on Marmousi model
Limitations: Dip angle vs Future work: P+M FWI P+M MVA