1 / 39

Average=84.2 Standard Deviation=13.4

Average=84.2 Standard Deviation=13.4. Average=161.6 Standard Deviation=24.9. Reaction Rates. Chemical kinetics is the study of reaction rates, how reaction rates change under varying conditions, and what molecular events occur during the overall reaction.

laird
Download Presentation

Average=84.2 Standard Deviation=13.4

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Average=84.2 Standard Deviation=13.4

  2. Average=161.6 Standard Deviation=24.9

  3. Reaction Rates • Chemical kinetics is the study of reaction rates, how reaction rates change under varying conditions, and what molecular events occur during the overall reaction. • What variables affect reaction rate? Surface area of a solid reactant or catalyst.

  4. The experimentally determined rate law is Dependence of Rate on Concentration • Reaction Order • Consider the reaction of nitric oxide with hydrogen according to the following equation. • Thus, the reaction is second order in NO, first order in H2, and third order overall.

  5. Dependence of Rate on Concentration • Reaction Order • Zero and negative orders are also possible. • The concentration of a reactant with a zero-order dependence has no effect on the rate of the reaction. • Although reaction orders frequently have whole number values (particularly 1 and 2), they can be fractional.

  6. Dependence of Rate on Concentration • Determining the Rate Law. • One method for determining the order of a reaction with respect to each reactant is the method of initial rates. • It involves running the experiment multiple times, each time varying the concentration of only one reactant and measuring its initial rate. • The resulting change in rate indicates the order with respect to that reactant.

  7. Dependence of Rate on Concentration • Determining the Rate Law. • If doubling the concentration of a reactant has a doubling effect on the rate, then one would deduce it was a first-order dependence. • If doubling the concentration had a quadrupling effect on the rate, one would deduce it was a second-order dependence. • A doubling of concentration that results in an eight-fold increase in the rate would be a third-order dependence.

  8. A Problem to Consider • Iodide ion is oxidized in acidic solution to triiodide ion, I3- , by hydrogen peroxide. • A series of four experiments was run at different concentrations, and the initial rates of I3- formation were determined. • From the following data, obtain the reaction orders with respect to H2O2, I-, and H+. • Calculate the numerical value of the rate constant.

  9. Initial Concentrations (mol/L) H2O2 I- H+ Initial Rate [mol/(L.s)] Exp. 1 0.010 0.010 0.00050 1.15 x 10-6 Exp. 2 0.020 0.010 0.00050 2.30 x 10-6 Exp. 3 0.010 0.020 0.00050 2.30 x 10-6 Exp. 4 0.010 0.010 0.00100 1.15 x 10-6 A Problem to Consider • Comparing Experiment 1 and Experiment 2, you see that when the H2O2 concentration doubles (with other concentrations constant), the rate doubles. • This implies a first-order dependence with respect to H2O2.

  10. Initial Concentrations (mol/L) H2O2 I- H+ Initial Rate [mol/(L.s)] Exp. 1 0.010 0.010 0.00050 1.15 x 10-6 Exp. 2 0.020 0.010 0.00050 2.30 x 10-6 Exp. 3 0.010 0.020 0.00050 2.30 x 10-6 Exp. 4 0.010 0.010 0.00100 1.15 x 10-6 A Problem to Consider • Comparing Experiment 1 and Experiment 3, you see that when the I- concentration doubles (with other concentrations constant), the rate doubles. • This implies a first-order dependence with respect to I-.

  11. Initial Concentrations (mol/L) H2O2 I- H+ Initial Rate [mol/(L.s)] Exp. 1 0.010 0.010 0.00050 1.15 x 10-6 Exp. 2 0.020 0.010 0.00050 2.30 x 10-6 Exp. 3 0.010 0.020 0.00050 2.30 x 10-6 Exp. 4 0.010 0.010 0.00100 1.15 x 10-6 A Problem to Consider • Comparing Experiment 1 and Experiment 4, you see that when the H+ concentration doubles (with other concentrations constant), the rate is unchanged. • This implies a zero-order dependence with respect to H+.

  12. Initial Concentrations (mol/L) H2O2 I- H+ Initial Rate [mol/(L.s)] Exp. 1 0.010 0.010 0.00050 1.15 x 10-6 Exp. 2 0.020 0.010 0.00050 2.30 x 10-6 Exp. 3 0.010 0.020 0.00050 2.30 x 10-6 Exp. 4 0.010 0.010 0.00100 1.15 x 10-6 • Because [H+]0 = 1, the rate law is: A Problem to Consider • The reaction orders with respect to H2O2, I-, and H+, are 1, 1, and 0, respectively.

  13. Initial Concentrations (mol/L) H2O2 I- H+ Initial Rate [mol/(L.s)] Exp. 1 0.010 0.010 0.00050 1.15 x 10-6 Exp. 2 0.020 0.010 0.00050 2.30 x 10-6 Exp. 3 0.010 0.020 0.00050 2.30 x 10-6 Exp. 4 0.010 0.010 0.00100 1.15 x 10-6 A Problem to Consider • You can now calculate the rate constant by substituting values from any of the experiments. Using Experiment 1 you obtain:

  14. Initial Concentrations (mol/L) H2O2 I- H+ Initial Rate [mol/(L.s)] Exp. 1 0.010 0.010 0.00050 1.15 x 10-6 Exp. 2 0.020 0.010 0.00050 2.30 x 10-6 Exp. 3 0.010 0.020 0.00050 2.30 x 10-6 Exp. 4 0.010 0.010 0.00100 1.15 x 10-6 A Problem to Consider • You can now calculate the rate constant by substituting values from any of the experiments. Using Experiment 1 you obtain:

  15. Change of Concentration with Time • A rate law simply tells you how the rate of reaction changes as reactant concentrations change. • A more useful mathematical relationship would show how a reactant concentration changes over a period of time.

  16. Change of Concentration with Time • A rate law simply tells you how the rate of reaction changes as reactant concentrations change. • Using calculus we can transform a rate law into a mathematical relationship between concentration and time. • This provides a graphical method for determining rate laws.

  17. You could write the rate law in the form Concentration-Time Equations • First-Order Rate Law

  18. Concentration-Time Equations • First-Order Rate Law • Using calculus, you get the following equation. • Here [A]t is the concentration of reactant A at time t, and [A]o is the initial concentration. • The ratio [A]t/[A]o is the fraction of A remaining at time t.

  19. The first-order time-concentration equation for this reaction would be: A Problem to Consider • The decomposition of N2O5 to NO2 and O2 is first order with a rate constant of 4.8 x 10-4 s-1. If the initial concentration of N2O5 is 1.65 x 10-2 mol/L, what is the concentration of N2O5 after 825 seconds?

  20. A Problem to Consider • The decomposition of N2O5 to NO2 and O2 is first order with a rate constant of 4.8 x 10-4 s-1. If the initial concentration of N2O5 is 1.65 x 10-2 mol/L, what is the concentration of N2O5 after 825 seconds? • Substituting the given information we obtain:

  21. A Problem to Consider • The decomposition of N2O5 to NO2 and O2 is first order with a rate constant of 4.8 x 10-4 s-1. If the initial concentration of N2O5 is 1.65 x 10-2 mol/L, what is the concentration of N2O5 after 825 seconds? • Substituting the given information we obtain:

  22. A Problem to Consider • The decomposition of N2O5 to NO2 and O2 is first order with a rate constant of 4.8 x 10-4s-1. If the initial concentration of N2O5 is 1.65 x 10-2 mol/L, what is the concentration of N2O5 after 825 seconds? • Taking the inverse natural log of both sides we obtain:

  23. A Problem to Consider • The decomposition of N2O5 to NO2 and O2 is first order with a rate constant of 4.8 x 10-4 s-1. If the initial concentration of N2O5 is 1.65 x 10-2 mol/L, what is the concentration of N2O5 after 825 seconds? • Solving for [N2O5] at 825 s we obtain:

  24. You could write the rate law in the form Concentration-Time Equations • Second-Order Rate Law

  25. Concentration-Time Equations • Second-Order Rate Law • Using calculus, you get the following equation. • Here [A]t is the concentration of reactant A at time t, and [A]o is the initial concentration.

  26. Graphing Kinetic Data • In addition to the method of initial rates, rate laws can be deduced by graphical methods. • If we rewrite the first-order concentration-time equation in a slightly different form, it can be identified as the equation of a straight line. • This means if you plot ln[A] versus time, you will get a straight line for a first-order reaction. (see Figure 14.9)

  27. Figure 14.9: A plot of log [R] versus time.

  28. Graphing Kinetic Data • In addition to the method of initial rates, rate laws can be deduced by graphical methods. • If we rewrite the second-order concentration-time equation in a slightly different form, it can be identified as the equation of a straight line. y = mx + b

  29. y = mx + b Graphing Kinetic Data • In addition to the method of initial rates, rate laws can be deduced by graphical methods. • If we rewrite the first-order concentration-time equation in a slightly different form, it can be identified as the equation of a straight line.

  30. In one half-life the amount of reactant decreases by one-half. Substituting into the first-order concentration-time equation, we get: Half-life • The half-life of a reaction is the time required for the reactant concentration to decrease to one-half of its initial value. • For a first-order reaction, the half-life is independent of the initial concentration of reactant.

  31. Half-life • The half-life of a reaction is the time required for the reactant concentration to decrease to one-half of its initial value. • Solving for t1/2we obtain: • Figure 14.8 illustrates the half-life of a first-order reaction.

  32. Figure 14.8: A graph illustrating that the half-life of a first-order reaction is independent of initial concentration. Half life, t1/2, is the time it takes for the [R] to decrease by 1/2. This is exactly like radioactive decay.

  33. Substitute the value of k into the relationship between k and t1/2. Half-life • Sulfuryl chloride, SO2Cl2, decomposes in a first-order reaction to SO2 and Cl2. • At 320 oC, the rate constant is 2.2 x 10-5 s-1. What is the half-life of SO2Cl2 vapor at this temperature?

  34. A model of SO2CI2(g)

  35. Half-life • Sulfuryl chloride, SO2Cl2, decomposes in a first-order reaction to SO2 and Cl2. • At 320 oC, the rate constant is 2.20 x 10-5 s-1. What is the half-life of SO2Cl2 vapor at this temperature? • Substitute the value of k into the relationship between k and t1/2.

  36. Half-life • Sulfuryl chloride, SO2Cl2, decomposes in a first-order reaction to SO2 and Cl2. • At 320 oC, the rate constant is 2.20 x 10-5 s-1. What is the half-life of SO2Cl2 vapor at this temperature? • Substitute the value of k into the relationship between k and t1/2.

  37. Again, assuming that [A]t = ½[A]o after one half-life, it can be shown that: Half-life • For a second-order reaction, half-life depends on the initial concentration and becomes larger as time goes on. • Each succeeding half-life is twice the length of its predecessor.

More Related