1 / 23

The Determination Of The R otational State Of C elestial Bodies

scuola di ingegneria aerospaziale dottorato di ricerca in ingegneria aerospaziale XXIV ciclo. The Determination Of The R otational State Of C elestial Bodies. R. Meriggiola Advisor : Prof. Luciano Iess. Roma, 3 Aprile 2012. Planetary Interior Structure Revealed by Spin Dynamics.

laksha
Download Presentation

The Determination Of The R otational State Of C elestial Bodies

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. scuola di ingegneria aerospaziale dottorato di ricerca in ingegneria aerospaziale XXIV ciclo The DeterminationOfThe Rotational State OfCelestialBodies R. Meriggiola Advisor: Prof. Luciano Iess Roma, 3 Aprile 2012

  2. PlanetaryInteriorStructureRevealedbySpin Dynamics Precession Polarmotion Interior Moment ofInertia obliquity seasonal mass redistribution Chandler’s Wobble free corenutations solid/fluidoutercore Librations eccentricityequatorialbulge determination of rotational state of celestial bodies

  3. RotationalModels (t) - Right Ascension (t) - Declination Standard model Pole Location IAU Model • Precession – nutation terms • Librationsonlyfor Moon precession (sinusoidal) termsincluded Developedmodels ExtendedModel W(t) - Prime Meridian  - Spin Rate Rotation • improvedaccuracy • polarmotionincluded LibrationModels • IAU modifiedversion • Librationsincluded precession (sinusoidal) termsincluded determination of rotational state of celestial bodies

  4. CurrentlyAppliedTechniques Observationof the Earth Radio tracking • opticalastrometricobservations • satellite tracking • laser ranging • GPS • VLBI • Radio tracking of Mars landers • Range/Doppler observables accuracy : 0.001 – 0.005 as accuracy: 0.13 as Ground-based Radar Imaging from orbit • Based on the correlation of receivedspeckles • Margot et al., 2007 Mercury Libration Experiment • Based on repeatedobservations of the sameregion • Magellan (Venus) • Cassini (Titan) • BepiColombo (Mercury) accuracy: 6 as accuracy: 1 - 36 as determination of rotational state of celestial bodies

  5. ImagingFromOrbitTechnique Pattern Matching 105° E 105° E 73° S 73° S Cross-over detection Apparentshift on the surface  = R2 – R1 Rotational RegistrationError pi Parameters Observables LeastSquaresFit A = M(pi,t2)r2,A – M(pi,t1)r1,A …. …. N = M(pi,t2)r2,N – M(pi,t1) r1,N determination of rotational state of celestial bodies

  6. Pattern Matching Menrva Crater on Titan SIFT features (Univ. of Bologna) ImageRegistration - Cassini SAR imagesofTitan determination of rotational state of celestial bodies

  7. Rotational State Determination Software Input Core Output W Matrix Residuals Error budget Rotationalmodel Dr LeastSquares Estimator EstimatedParameters r1, r2 t1, t2 Ancillary Information PartialDerivatives Tiepointinertial direction (r1,r2) Observationepoch (t1,t2) Propagated pole at a referenceepoch • A simulatedobservablesgeneratorwasdevelopedtoperformsimulations • Software validation: extensivesimulations (noiseless, gaussian, systematics) determination of rotational state of celestial bodies

  8. TitanObservedFromCassini Cassini SAR • Cassini RADAR imaging • > 71 Titanflybys • SAR Imager, altimeter, radiometer, scatterometer • HGA diameter: 4 m • SAR imager: 13.78 GHz, • resolution: 0.175  1.4 km Operative sequencefor a Cassini RADAR flyby (Elachiet al., 2005) Titan Atmosphere • N2, Methane dense atmosphere (50% more thanEarth) Surface • icyshellwithliquidhydrocarbonrivers and lakes. Dunes can easilydetected. Surface temperature about 94 K. • hydrologiccyclebased on hydrocarbons SAR false colourimaging of Ligeia Mare determination of rotational state of celestial bodies

  9. Goalsof the Experiment Cassini state 1 Obliquity Stiles et al. 2008:  = 0.3 deg • Occupancyof a Cassini state • MoIfromobliquity • information on the interiorstructure • core-shelldecoupling Laplace pole Orbit pole Spinaxis InteriorofTitan Spin Rate Stileset al., 2010: ( =22.5773 deg/day) • Iesset al., 2012: evidenceof a sub-surfaceocean • Atmospericaltorqueacting on a coredecoupledfrom the shell? • Non-synchronousrotation? determination of rotational state of celestial bodies

  10. Data Processing • Georeferenced BIDR images at 256 pxl/deg (175 m) resolution • Conversionfromoblyquecylindricaltogeographical lat/lonprojection • Stereographicprojectionforpolarflybys • Visual detection ofcrossovers and selectionof ROI (Regions-of-Interest) • Used pattern matching algorithm: 2D cross-correlation • 243 producedtiepointswithregistrationerrorsbetween 400 m and 40 km • Heightcorrectionsprovidedby JPL Green – Prime Mission Blue – ExtendedMission determination of rotational state of celestial bodies

  11. Pattern Matching • Severalobservationswith a t > 1000 days • distributionof the correlationindex (I) for cross-over pairs • > 60% ofobservationshas a correlationindex > 0.3 T55 flyby – f25 T56 flyby – f25 determination of rotational state of celestial bodies

  12. Models and Estimation Cases IAU, NAV Models • NAV model: based on IAU, includesupdatedcoefficients and nutation terms(i = 2…N) • Case A: linear approximation valid for the observation epoch • Case B: estimated amplitude of the precessionterms determination of rotational state of celestial bodies

  13. Residuals • 8 outliersdetected • detected a 4 km bias for T3, T7, T21, T41, T61 data • improvementsintroducing a periodicterminto Prime Meridian formulation • No improvements are observed for all models determination of rotational state of celestial bodies

  14. SpinRate and NSR NSR rotationabsent • estimatedcompatible at 3-level (worst case) withsynchronousvalue • sameresultsobtainedforall the estimates • residual NSR is 0.02° Estimatedvalues determination of rotational state of celestial bodies

  15. Pole Location and Cassini State Solutions are compatiblewith the occupancyof a Cassini state • Obliquity = 0.31 deg • Precessionterms • Deviation ( 2°) for the estimated pole (IAU) • Largerdeviationsfor NAV model estimate due to nutation terms • Unknownaccuracyof the Laplace pole determination of rotational state of celestial bodies

  16. Pole Location and Obliquity Estimate at AVG observationepoch • Averaged pole location (2004-2009) • resultscompatiblewithprevious estimate IAU, NAV models • modelto propagate the spinaxismotion • center ofprecession Laplace pole • differencebetween IAU and NAV estimatedobliquity due to the nutations Obliquity  = 0.31 ± 0.005deg determination of rotational state of celestial bodies

  17. Geophysicalimplications: Obliquity • Estimated= 0.31°  0.005° • + • Cassini state 1 -0.14 MoIfromobliquity (Bills and Nimmo, 2008) rotation gravity (gravityfieldinferredfrom (Iess et al., 2010) • disagreementwithgravity data/ unphysicalvalue • inferredfromsurfacemeasurements • differentiatedinteriorstructure MoI = 0.62 determination of rotational state of celestial bodies

  18. GeophysicalImplications: Spin Rate Measured NSR • NSR variesbetween +0.02 deg/year and -0.02° deg/year • A signinversionisobservedbetween prime and extendedmission • Similartrend(amplitude and sign) waspredictedbyKaratekinet al. (2008) • Seasonalvariationsofspin rate  atmospherictorqueacting on a shelldecoupledfrom the core Seasonalvariationsof (Karatekinet al.,2008) determination of rotational state of celestial bodies

  19. BepiColombo Rotation Experiment Goalsof the experiment • Investigationof the interiorofMercury • MoIfromobliquity (Cassini state) • Librations moltencoreofMercury Librations in longitude Solidcore Fluidcore BepiColombo MPO and HRIC • Launch at 2015, orbitinsertion at 2022 • polarorbit (400 x 1508 km - 2.3 hrperiod) • three-axisstabilized – nadir pointing • High ResolutionImagingChannel (Optical) • resolution: 5 m at pericenter • swathwidth at periapsis: 21km (3.2°) determination of rotational state of celestial bodies

  20. Error Budget • Target: 1 arcsec accuracy (librations) • Systematicerrors (8 m) • Veryperformant pattern matching • Attitudedeterminationis the mostrelevanterror source determination of rotational state of celestial bodies

  21. Rotation Experiment Simulator Modules Simulations • attitude • image georeferencing • generation of the observables • Estimator • attitude error • registration error • error-free preliminary simulations determination of rotational state of celestial bodies

  22. Conclusions and Future Work Models and Methods • reviewofcurrentrotationalmodels • Extendedrotationalmodel • IAU modifiedmodel (librationterms) • reviewof the technique • selectionof pattern matching algorithms • Estimator: RSDS software Mercury Rotation Experiment Titan Rotation Experiment • data processing • estimationofspin rate and obliquity • occupancyof a Cassini state 1 • differentiatedstructureof the interior • seasonalvariationsofspin rate • Future Work • Nutations and librations estimate • end-to-endexperiment simulator • modeling of the errorsources • Future Work • experimentsimulations determination of rotational state of celestial bodies 22 determination of rotational state of celestial bodies

  23. Abstracts & Conferences NASA/ESA/ASI Cassini PSG – RADAR Team Meeting , London, Giugno 2011 Talk: “TitanGravity and Rotation” Autori: L. Iess, R. Meriggiola, P.Racioppa, NASA – Titan Surface Workshop, Caltech, 26 – 27 Agosto 2009 Talk: “Titan Rotation” Authors: L. Iess, R. Meriggiola NASA – Cassini Radio Science Team Meeting , JPL, 23 Ottobre 2009 Talk: “TitanGravity and Rotation” Autori: L. Iess, J.W. Armstrong, S.W.Asmar, R.Jacobson, R. Meriggiola, P.Racioppa, N.Rappaport,D.J. Stevenson, B. Stiles, P. Tortora ESA BepicolomboGeodesdy and GeophysicsWorking Group, Berlino, 03 Luglio 2010 Poster: “MORE: Recovery of Mercury gravity field and MPO Orbit” Authors: A. Genova, M. Marabucci, L. Iess, R. Meriggiola EGU General Assembly , Vienna, 7 Aprile 2011 Abstract: “Simulations of BepiColombo's Mercury Rotation Experiment” Authors: P. Tortora,A. Bevilacqua, L. Carozza, A. Genova, A. Gherardi, L. Iess, R. Meriggiola, A. Palli, P. Palumbo, M. Zusi NASA/ESA/ASI Cassini PSG – RADAR Team Meeting , ESTEC (Noordwijck), Giugno 2011 Talk: “Summary of activities with Cassini RADAR data in Rome” Authors: R. Orosei, L. Iess, M. Langhans, J.I. Lunine, R. Meriggiola, G. Mitri, F. Tosi EPSC 2011 , Nantes, 2-7 Ottobre 2011 Abstract: “Image Processing Simulations for the BepiColombo Rotation Experiment” Authors: A. Palli,, A. Bevilacqua, L. Carozza, A. Genova, A. Gherardi, L. Iess, R. Meriggiola, P. Palumbo, P. Tortora, M. Zusi AGU Fall Meeting 2011 , San Francisco, 5-9 Dicembre 2011 Abstract: “The rotation of Titan by latest Cassini data” Authors: R. Meriggiola, L. Iess, B.W. Stiles determination of rotational state of celestial bodies 23

More Related