1 / 41

N*ews from COSY

N*ews from COSY. May 2011 | Hans Ströher (Forschungszentrum Jülich, Germany). N*ews from COSY – Outline. COSY-facility Detection systems Selected recent results . N*ews from COSY – Storage Ring. Cooler and storage ring for (polarized) protons and deuterons p = 0.3 – 3.7 GeV/c

lamont
Download Presentation

N*ews from COSY

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. N*ews from COSY May 2011 | Hans Ströher (Forschungszentrum Jülich, Germany)

  2. N*ews from COSY – Outline COSY-facility Detection systems Selected recent results

  3. N*ews from COSY – Storage Ring Cooler and storage ring for (polarized) protons and deuterons p = 0.3 – 3.7 GeV/c Phase space cooled internal & extracted beams COSY e-Cooler Injector cyclotron

  4. N*ews from COSY – Storage Ring Cooler and storage ring for (polarized) protons and deuterons p = 0.3 – 3.7 GeV/c Phase space cooled internal & extracted beams COSY e-Cooler … the machine for spin physics with hadron beams Injector cyclotron

  5. N*ews from COSY – Experiments • Hadron physics with hadronic probes • Experimental set-ups: • ANKE • WASA • EDM • TOF • NEW: • PAX WASA ANKE EDM PAX TOF

  6. N*ews from COSY – Experiments • Hadron physics with hadronic probes • Experimental set-ups: • ANKE • WASA • EDM • TOF • NEW: • PAX WASA ANKE EDM PAX TOF Future plan/project: srEDM

  7. N*ews from COSY – Experiments • ANKE: • forward magnetic spectrometer • solid, gas-jet, polarized targets • double polarization experiments • TOF: • large acceptance non-magnetic det. • liquid hydrogen, deuterium targets • (non-)strange meson, hyperon prod. • WASA: • ~4p electromagnetic calorimeter • thin superconducting solenoid • hydrogen, deuterium pellet target • symmetries and symmetry violation

  8. N*ews from COSY – Experiments • ANKE: • forward magnetic spectrometer • solid, gas-jet, polarized targets • double polarization experiments • TOF: • large acceptance non-magnetic det. • liquid hydrogen, deuterium targets • (non-)strange meson, hyperon prod. • WASA: • ~4p electromagnetic calorimeter • thin superconducting solenoid • hydrogen, deuterium pellet target • symmetries and symmetry violation

  9. N*ews from COSY – Experiments • ANKE: • forward magnetic spectrometer • solid, gas-jet, polarized targets • double polarization experiments • TOF: • large acceptance non-magnetic det. • liquid hydrogen, deuterium targets • (non-)strange meson, hyperon prod. • WASA: • ~4p electromagnetic calorimeter • thin superconducting solenoid • hydrogen, deuterium pellet target • symmetries and symmetry violation

  10. N*ews from COSY – General • N N N N*  [N N] X (= g, p, h, …) NN fusion: p N(+) (N N*)+(+)  d p(+) • D-resonance Mostly:noresonancestructure, since 3(4)-body phase-space & strong FSI •  invariant massdistributions COSY HADES at GSI

  11. N*ews from COSY – General N N  N N*  [N N] X (= g, p, h, …) Special cases, e.g. p p  p p p0p0 Roper COSY WASA at CELSIUS

  12. N*ews from COSY – General N N  N N*  N K Y (hyperons) Isospin(-filter): K L only N*resonances, e.g. N*(1650, 1675, 1680,1700, 1710, 1720, 1840, 1875, 1900) K Sboth N* andD*resonances, e.g. D*(1600, 1620, 1700, 1750, 1900) Polarization(target, beam): K+, p, Lasymmetries, Lpolarization COSY

  13. N*ews from COSY – Results (I) p p p K+ Y0 (Y0 = L, S0) TOF

  14. N*ews from COSY – pp  pK+ (L;S0) Reaction: pp  p K+ (p p-) 3 beam energies: pp = 2.95 GeV/c (QL = 204, QS = 124 MeV); 3.06 GeV/c (239, 162 MeV); 3.20 GeV/c (284, 207 MeV) Primary and secondary V-shape; charged multiplicity jump; ToF

  15. N*ews from COSY – pp  pK+ (L;S0) Reaction: pp  p K+ (p p-) 3 beam energies: pp = 2.95 GeV/c (QL = 204, QS = 124 MeV); 3.06 GeV/c (239, 162 MeV); 3.20 GeV/c (284, 207 MeV) Primary and secondary V-shape; charged multiplicity jump; ToF Result: (1) COSY-TOF collaboration, EPJ A 46, 27 – 44 (2010)

  16. N*ews from COSY – pp  pK+ (L;S0) Reaction: pp  p K+ (p p-) 3 beam energies: pp = 2.95 GeV/c (QL = 204, QS = 124 MeV); 3.06 GeV/c (239, 162 MeV); 3.20 GeV/c (284, 207 MeV) Primary andsecondary V-shape; chargedmultiplicity jump; ToF Result: (2) L case(239 MeV): completecoverage cmsframe: cos(q)= 0 symmetric Jackson-frames helicity-frames

  17. N*ews from COSY – pp  pK+ (L;S0) Reaction: pp  p K+ (p p-) 3 beam energies: pp = 2.95 GeV/c (QL = 204, QS = 124 MeV); 3.06 GeV/c (239, 162 MeV); 3.20 GeV/c (284, 207 MeV) Primary andsecondary V-shape; chargedmultiplicity jump; ToF Result: (3) helicity-frames: strong evidencefor: N*(1650)S11 N*(1710)P11and/or N*(1720)P13 unlikely: N*(1675)D15 N*(1680)F15 N*(1700)D13 pL K+p

  18. N*ews from COSY – pp  pK+ (L;S0) Reaction: pp  p K+ (p p-) 3 beam energies: pp = 2.95 GeV/c (QL = 204 MeV); 3.20 GeV/c (284 MeV) 3.30 GeV/c (316 MeV) Primary and secondary V-shape; charged multiplicity jump; ToF Result: (3)COSY-TOF collaboration, PL B 688, 142 (2010) Dalitz-plot analysis Importance of N*(1650) compared to N*(1710) N*(1720) 2.85 GeV/c … TOF (2006)

  19. N*ews from COSY – pp  pK+ (L;S0) Reaction: pp  p K+ (p p-) 3 beam energies: pp = 2.95 GeV/c (QL = 204, QS = 124 MeV); 3.06 GeV/c (239, 162 MeV); 3.20 GeV/c (284, 207 MeV) Primary andsecondary V-shape; chargedmultiplicity jump; ToF Result: (4) S0case(162 MeV): completecoverage smallstatistics cmsframe Jackson-frames helicity-frames differencestoL

  20. N*ews from COSY – pp  pK+ (L;S0) • Next: additional high-statisticsdata PWA • (i) upgradeddetector (STT)(ii) polarizedprotonbeam (2.95 GeV/c) pb = 2.95 GeV/c P = (61 +- 2) %

  21. N*ews from COSY – pp  pK+ (L;S0) • Next: additional high-statisticsdata PWA • (i) upgradeddetector (STT)(ii) polarizedprotonbeam (2.95 GeV/c) • PAC39 (May 2011) allocated 9 weekstofinalizephysicsprogram; • after thatTOF will bedecomissioned in 2012. pb = 2.95 GeV/c P = (61 +- 2) %

  22. N*ews from COSY – Results (II) p p n K+S+ ANKE, COSY-11 HIRES

  23. N*ews from COSY – pp  n K+ S+ Reaction: pp  K+ n X (COSY-11) pp  K+ X ; (K+p) X ; (K+p+) X (ANKE) pp  K+ X (HIRES) Result: (1)COSY-11 collaboration, PL B 643, 251 (2006) ANKE collaboration, PR C81, 045208 (2010) HIRES collaboration, PL B 692, 10 (2011) Disappointingexpt´lsituation, but: very high X-section clearlyexcluded  noD* ++ (1620) contributionneeded s [µb]

  24. N*ews from COSY – Results (III) p p p pw (Resonances?) TOF

  25. N*ews from COSY – pp  pp w Reaction: pp  p p p+p- X 3 beam energies: pp = 2.95 GeV/c (Qw = 92 MeV); 3.06 GeV/c (128 MeV) 3.20 GeV/c (173 MeV) 4 charged particles; ToF; missing p0 Result: (1)COSY-TOF collaboration, EPJ A 44, 7 (2010) w via missing mass „… no obvious indication of w- production via N* resonances found …“

  26. N*ews from COSY – Results (IV) p p {pp}sg (D(1232)) ANKE

  27. N*ews from COSY – pp  {pp}sg Reaction: pp  pp X (X = g, p0) 6 beam energies: Tp= 353 … 800 MeV 2 protons, DEpp < 3MeV  1S0 (Diproton); qlab < 20° Result: (1)ANKE collaboration, J.Phys. G 37, 105005 (2010) missingmassanalysis p0 dominating; clearg-contribution

  28. N*ews from COSY – pp  {pp}sg Reaction: pp  pp X (X = g, p0) 6 beam energies: Tp = 353 … 800 MeV 2 protons, DEpp < 3MeV  1S0 (Diproton); qlab < 20° Result: (2) energy dependence shows resonant behavior; comparison with pn  d g D-resonance shifted, smaller width (note: no M1 possible) WASA/Promise result (Uppsala) – covers much larger angular range

  29. N*ews from COSY – Results (V) p n  d p0p0 (ABC-Effect) WASA May 18,2011 - Session II-C (15:20) T. Tolba; „Double pion production in pp-interactions at Tp = 1.4 GeV“

  30. N*ews from COSY – pp  pp p0p0 near threshold high energies pp→∆ ∆(1232) p π p π pp ppππ pp→pN*(1440) p π π ∆ (1232) π p π

  31. N*ews from COSY – pn  d p0p0 Reaction: pd  d p0p0 pspectator ; d andp0p0detected 3 beam energies: Tp = 1.0, 1.2, 1.4 GeV; Fermi momentum Effective energy ranges: 2.22 – 2.36; 2.33 – 2.44; 2.42 – 2.56 GeV Result: (1) WASA-Collaboration, submitted PRL (2011)

  32. N*ews from COSY – pn  d p0p0 Reaction: pd  d p0p0 pspectator ; d and p0p0 detected 3 beam energies: Tp = 1.0, 1.2, 1.4 GeV; Fermi momentum Effective energy ranges: 2.22 – 2.36; 2.33 – 2.44; 2.42 – 2.56 GeV Result: (2) Maximum (2.38 GeV) Off-peak (2.50 GeV)

  33. N*ews from COSY – pn  d p0p0 Reaction: pd  d p0p0 pspectator ; d and p0p0 detected 3 beam energies: Tp = 1.0, 1.2, 1.4 GeV; Fermi momentum Effective energy ranges: 2.22 – 2.36; 2.33 – 2.44; 2.42 – 2.56 GeV Result: (2)

  34. N*ews from COSY – pn  d p0p0 Reaction: pd  d p0p0 pspectator ; d and p0p0 detected 3 beam energies: Tp = 1.0, 1.2, 1.4 GeV; Fermi momentum Effective energy ranges: 2.22 – 2.36; 2.33 – 2.44; 2.42 – 2.56 GeV Result: (3) What is this? independently normalized Mass ~ M(DD) - 80 MeV Width ~ ¼ ofG(DD)

  35. N*ews from COSY – pn  d p0p0 Reaction: pd d p0p0pspectator ; d andp0p0detected 3 beam energies: Tp = 1.0, 1.2, 1.4 GeV; Fermi momentum Effectiveenergyranges: 2.22 – 2.36; 2.33 – 2.44; 2.42 – 2.56 GeV Result: (3) Roper-contribution(R  Dp  Npp)

  36. N*ews from COSY – pn  d p0p0 Reaction: pd  d p0p0 pspectator ; d and p0p0 detected 3 beam energies: Tp = 1.0, 1.2, 1.4 GeV; Fermi momentum Effective energy ranges: 2.22 – 2.36; 2.33 – 2.44; 2.42 – 2.56 GeV Result: (3) t-channel DD-contribution (from pp  d p+p0 via isospin)

  37. N*ews from COSY – pn  d p0p0 Reaction: pd  d p0p0 pspectator ; d and p0p0 detected 3 beam energies: Tp = 1.0, 1.2, 1.4 GeV; Fermi momentum Effective energy ranges: 2.22 – 2.36; 2.33 – 2.44; 2.42 – 2.56 GeV Result: (3) s-channel resonance at M = 2.37 GeV and G = 68 MeV

  38. N*ews from COSY – pn  d p0p0 Reaction: pd  d p0p0 pspectator ; d and p0p0 detected 3 beam energies: Tp = 1.0, 1.2, 1.4 GeV; Fermi momentum Effective energy ranges: 2.22 – 2.36; 2.33 – 2.44; 2.42 – 2.56 GeV Result: (4) Next: (i) pn  pn p0p0, (ii) pol. d-beam (i.e. np  d p0p0), (iii) pn elastic pn  R(3+)  DD  dp0p0 J=3 J=1

  39. N*ews from COSY – Summary • Part oftheongoingCOSYprogramdevotedtoN* physics • (NN- and NY-interaction (ANKE, TOF), symmetries (WASA), …) • Hyperon productionat TOF  extensionto pol. beams  PWA • ABC-resonanceat WASA  nature (s-channelresonance?)

  40. N*ews from COSY – Summary • Part oftheongoingCOSYprogramdevotedtoN* physics • (NN- and NY-interaction (ANKE, TOF), symmetries (WASA), …) • Hyperon productionat TOF  extensionto pol. beams  PWA • ABC-resonanceat WASA  nature (s-channelresonance?)

  41. N*ews from COSY – Information pp  pp m

More Related