1 / 25

Mars Express Radio Science Experiment MaRS MaRS Radio Science Data: Level 3 & 4 Basics

Mars Express Radio Science Experiment MaRS MaRS Radio Science Data: Level 3 & 4 Basics S.Tellmann, M.Pätzold ESAC June 2008. Overview. LEVEL 3: The Bending Angle & the Rayparameter The Refractive Index/Refractivity & Radius LEVEL 4: The Neutral Atmosphere Density Temperature

lana
Download Presentation

Mars Express Radio Science Experiment MaRS MaRS Radio Science Data: Level 3 & 4 Basics

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Mars Express Radio Science Experiment MaRS MaRS Radio Science Data: Level 3 & 4 Basics S.Tellmann, M.Pätzold ESAC June 2008

  2. Overview LEVEL 3: • The Bending Angle & the Rayparameter • The Refractive Index/Refractivity & Radius LEVEL 4: • The Neutral Atmosphere • Density • Temperature • Pressure • The Ionosphere • The Electron Density The Twoway Problem

  3. Earth Occultations MEX f : signal transmitted from MEX f : signal received w/o atmosphere Df : classical Doppler shift send MEX w/o rec dop Neutral Atmosphere Mars Ionosphere w/o MEX f = f + Df send rec dop w/o f rec

  4. Earth Occultations MEX f : signal transmitted from MEX f : signal received w/o atmosphere Df : classical Doppler shift f : signal received with atmosphere Df : frequency shift from atmosphere send Ray Asymptote MEX w/o rec dop a with Neutral Atmosphere rec Mars atm Ionosphere w/o MEX f = f + Df with f send rec dop rec w/o f rec with MEX f = f + Df + Df + Df dop iono send rec atm a : bending angle

  5. Bending Angle & Rayparameter Retrieval based on geometrical optics [Fjeldbo et al., 1971] a : bending angle a : rayparameter

  6. Bending Angle & Rayparameter Basic Idea: • Input: • Position of Spacecraft, • Groundstation & Mars • Velocity of Spacecraft, • Groundstation & Mars [Fjeldbo et al., 1971]

  7. Doppler Effect For vEarth << vS/C:

  8. The Refractivity • Calculation of Refractive index from bending angle and rayparameter • Reconstruction of a two-dimensional radial symmetric • distribution f(r) from its projection g(y) inverse Abeltransform [Pretzler et al., 1992] Abel transform: The twodimensional function is given by: Inverse Abel transform: [Jenkins, 1992]

  9. The Refractivity • Inverse Abeltransform: Refractive Index: • Integration of bending angle and rayparameter over all layers • already traversed n1 n2 n3 n4

  10. The Radius (ray peripasis) r : radius a : rayparameter n : refractive index

  11. Refractivity Ionosphere: Negative Refractivity higher than ~ 80 km altitude approx. 3480 km radius Transition Region: no significant bending approx. 60 km – 80 km altitude approx. 3450 km – 3480 km Neutral Atmosphere: Positive Refractivity up to approx. 50 km altitude up to approx. 3450 km radius Ionopause Ionosphere Transition Region Neutral Atmosphere Refractivity

  12. Retrieval of atmospheric parameter f0 : Radio link frequency Ne : electron density C1, C3 : atm. constants k : Boltzman constant n: neutral number density Refractivity m(h): Neutral Atmosphere Ionosphere

  13. The Ionosphere Refractivity m(h) in Ionosphere (h>60km): f0 : Radio link frequency Ne : electron density C3 : atm. constant Neutral Atmosphere Ionosphere

  14. The Electron Density f0 : Radio link frequency Ne : electron density C3 = 40.31 m3/s2 • refractivity is ~1/ f2 • S-band is more sensitive to electron density than X-band

  15. The Neutral Atmosphere Refractivity m(h) in neutral atmosphere (h<50km): C1: atm. constants k : Boltzman constant n: neutral number density Neutral Atmosphere Ionosphere Second term << first term

  16. Neutral Atmosphere Neutral Number Density: Pressure (assuming hydrostatic equilibrium): Temperature: ideal gaslaw

  17. The Twoway Problem

  18. So far assumed: Oneway MEX f : signal transmitted from MEX f : signal received w/o atmosphere Df : classical Doppler shift f : signal received with atmosphere Df : frequency shift from atmosphere send MEX w/o rec dop a with Neutral Atmosphere rec Mars atm Ionosphere w/o MEX f = f + Df with f send rec dop rec w/o f rec with MEX f = f + Df + Df + Df dop iono send rec atm a : bending angle

  19. But in Realty: Twoway Radio Link MEX Neutral Atmosphere Mars MEX Earth up f = f + Df rec send Ionosphere Up: X-band: 7.1 GHz Earth f send

  20. The Twoway Problem MEX MEX f · k rec Neutralatmosphäre Mars MEX Earth up f = f + Df rec send Ionosphäre f = {f + Df }·k MEX Earth up send send Up: X-band: 7.1 GHz Earth f send

  21. The Twoway Problem MEX a Neutral Atmosphere Mars MEX Earth up f = f + Df rec send Ionosphere f = {f + Df }·k MEX Earth up send send Earth Up: X-band: 7.1 GHz Down: X-band: 8.4 GHz S-band: 2.3 GHz f rec Earth f send up down Earth Earth f = k·f + k·Df + Df rec send

  22. The Twoway Problem • Bending of Radio link on Uplink & Downlink • Difficult to seperate effects from Uplink & Downlink • Different dependency on Radio frequency in Ionosphere and Neutral atmosphere Neutral Atmosphere: Independent of frequency Ionosphere: m ~ 1/ f2

  23. The Twoway Problem • Different frequencies on Uplink and Downlink • Ionospheric Bending is ~ 1/f2 Different bending on Uplink & Downlink • Bending in Neutral Atmosphere independent of frequency • Retrieval of bending angle and rayparameter is exclusively dependent on measurement geometry!!!! No frequency dependeny taken into account! Solution: • Retrieve Ionosphere and Neutral Atmosphere separately

  24. Twoway Problem: The Ionosphere Best Solution: • Use Differential Doppler (~ pure Oneway S-band Downlink) • All effects ~ f are subtracted due to the use of to coherent frequencies Other solution: • Make an iterative solution: • solve for „mean Ionosphere“ • Calculate electron density refractivity for Uplink & Downlink • Make Raytracing: calculate bending in this „assumed“ atmosphere • Compare solution of ray tracing with true residual……

  25. Twoway Problem: Neutral Atmosphere • Treat Uplink and Downlink explicitely with basic formulas from Oneway • Solve Uplink & Downlink in the way already described Literature: • Lipa, B. and Tyler, G.L., 1979. „Statistical and Computational Uncertainties in Atmospheric Profiles from Radio Occultation: Mariner 10 at Venus“, Icarus 39, 192 – 208. • Jenkins et al., 1994. „Radio Occultation Studies of the Venus Atmosphere with the Magellan Spacecraft“, Icarus 110, 79 – 49.

More Related