260 likes | 525 Views
Coherent excitation of Rydberg atoms on an atom chip. Rutger M. T. Thijssen Van der Waals - Zeeman Instituut voor Experimentele Natuurkunde. Quantum Information Processing. Qubits Coherence Switchable interactions Scalability. MAGCHIPS. “Atom chip” (room temperature). 22 µ m.
E N D
Coherent excitation of Rydberg atoms on an atom chip Rutger M. T. Thijssen Van der Waals - Zeeman Instituut voor Experimentele Natuurkunde
Quantum Information Processing • Qubits • Coherence • Switchable interactions • Scalability
“Atom chip” (room temperature) 22 µm 10 µm Magnetised film MAGCHIPS • Permanent magnetic lattice atom chip • Gold-coated for laser cooling • 500 populated magnetic microtraps Prospective qubits 87Rb, T~mK
Quantum information on MAGCHIPS Neutral atoms: intrinsically weak interaction with environment Exquisite control & manipulation Scalability Stable qubits
Quantum information on MAGCHIPS Intrinsically weak interaction with environment • Good: long coherence times (~sec.) • Challenge: quantum information requires interaction: we have to work to add an interaction between qubits (i.e. traps) Neutral atoms: intrinsically weak interaction with environment Exquisite control & manipulation Scalability Stable qubits
Rydberg atoms • Hydrogen-like atom • High principal (n) quantum number • Large dipole-dipole interaction between Rydberg atoms • Dipole blockade
|5p 780nm (infrared) |5s Rydberg Excitation |ns |nd 480nm (blue) Toptica TA-SHG 110 frequency doubled diode laser, tunable from 488-479nm (n=18-ionization threshold) (300mW) Toptica DL-100 diode laser (30mW)
Electromagnetically Induced Transparency |nd |5p δωp Ωp γ12 |5s Detuning (δωp)
Electromagnetically Induced Transparency |nd Ωc |5p δωp Ωp γ12 |5s Detuning (δωp)
|nd Ωc |5p |a- Ωp 780nm (infrared) |5s |a0 (5s) Electromagnetically Induced Transparency – dressed states Rediagonalise interaction Hamiltonian Interference between |a+ and |a- dressed states: reduced probe absorption on two-photon resonance |a+ Autler – Townes splitting + Fano interference
vapour cell EIT, |39d Coupling laser detuning (MHz) EIT – frequency stabilisation in a vapour cell 480 nm diode laser fast photodiode dichroic mirror Rubidium vapour cell dichroic mirror 780 nm diode laser
EIT Imaging optical fiber
EIT Imaging optical fiber
EIT Imaging • Blue laser frequency locked to vapour cell EIT • Red laser scanned over resonance Optical density Detuning (MHz) Position (px)
Surface effects • Near-field blackbody radiation from chip • “mirror” effect: Rydberg atom interacting with itself • Photoelectric effect on surface: adsorbed Rb, Au • Patch potentials • Crystal defects in FePt • Adsorbed Rb ions
Summary • MAGCHIPS experiment • Rydberg / EIT for interactions between qubits • Built laser system • Built frequency locking setup for probe and coupling laser • Imaged Rydberg / EIT in surface magneto-optical trap • Investigating effects of surface on Rydberg levels • Build a quantum computer…
Summary • MAGCHIPS experiment • Rydberg / EIT for interactions between qubits • Built laser system • Built frequency locking setup for probe and coupling laser • Imaged Rydberg / EIT in surface magneto-optical trap • Investigating effects of surface on Rydberg levels • Build a quantum computer…
THANK YOU Questions? Rutger M. T. Thijssen rmeijert@science.uva.nl
2-photon gates • Zoller Mesoscopic Rydberg gates using EIT Focused lasers |0> |1> Microwave/Raman 6.8 GHz |0> |1> Rydberg interaction Ensemble A Ensemble B
Rydberg Atoms • One highly excited electron (n=20-100) • Rydberg formula: • Size ~ n^2 • Lifetime ~ n^3 • Polarisability ~n^7 • Van der Waals interaction ~ n^11 • Dipole blockade shifts nearby Rydberg levels