300 likes | 316 Views
Explore the optimization of instruments at CANS for high brilliance Neutron Source, including target moderator reflector units, beam multiplexer, and pulse distribution to TMRs. Discover various parameters such as pulse length, frame length, duty cycle, size of channel, reflector decay time, and more.
E N D
Tailoring the phase space volume for Instruments at CANS 17 October 2019 I Paul Zakalek
High Brilliance Neutron Source • Target Moderator Reflector • 3 Stations with each: • 100 kW average • 100 mA peak • < 2% duty factor • Beam Multiplexer (2nd floor) • Pulse Distribution to TMRs • 24 Hz, 96 Hz, 384 Hz • 833 µs, 208 µs, 52 µs • LINAC • 70 MeV protons • 100 mA peak • < 6% duty factor
Target / Moderator / Reflector Unit Protons Neutrons
Target ROOM Concrete shielding Moderator Shielding Neutron guide Reflector
Target ROOM Concrete shielding 4 m 0.8 m 1.4 m 4 m 0.2 m Moderator Shielding Neutron guide Reflector Distance 0.4 m 2 m 6 m 7.4 m 0 m 0.1 m
Free parameters at CANS • Pulse length λ resolution • Frame length bandwidth • Duty cycle time resolution (λelastic, λf) vs. intensity • Size of channel brilliance vs. integral intensity • Cold moderator spectrum • (Reflector decay time of thermal neutrons) • Instrument length bandwidth, intensity of epithermal / fast neutrons • Optics brilliance transfer, phase space
Target / Moderator / Reflector UNIT Neutrons Extraction channel 7 • Proton beam parameters • Duty cycle: 2% • Frequency: 24, 96, 384 Hz • Pulse width: 833, 208, 52 µs 6 Thermalmoderator 5 Proton beam • Cryogenic moderator inset 4 Frequency, duty cycle Φ [1012cm-2s-1mA-!] 3 2 Target 1 Reflector 20 cm 20 17 October 2019 Page 7
Target / Moderator / Reflector UNIT Neutrons Extraction channel 7 • Proton beam parameters • Duty cycle: 2% • Frequency: 24, 96, 384 Hz • Pulse width: 833, 208, 52 µs • Extraction channel • Radius: 0.5 cm, ... 3 cm • Cryogenic moderator inset 6 Thermalmoderator 5 Proton beam • Cryogenic moderator inset 4 Frequency, duty cycle Φ [1012cm-2s-1mA-!] 3 Target 2 Reflector 1 20 20 cm 17 October 2019 Page 8
Target / Moderator / Reflector UNIT Neutrons Extraction channel 7 • Proton beam parameters • Duty cycle: 2% • Frequency: 24, 96, 384 Hz • Pulse width: 833, 208, 52 µs • Extraction channel • Radius: 0.5 cm, ... 3 cm • Cryogenic moderator inset • Cryogenic moderator • Material: Para-H2, Methan 6 Thermalmoderator 5 Proton beam • Cryogenic moderator inset 4 Frequency, duty cycle Φ [1012cm-2s-1mA-!] 3 Target 2 Reflector 1 20 20 cm 17 October 2019 Page 9
Target / Moderator / Reflector UNIT Neutrons Extraction channel 7 • Proton beam parameters • Duty cycle: 2% • Frequency: 24, 96, 384 Hz • Pulse width: 833, 208, 52 µs • Extraction channel • Radius: 0.5 cm, ... 3 cm • Cryogenic moderator inset • Cryogenic moderator • Material: Para-H2, Methan • Reflector • Material: Be, Pb, Bor-PE 6 Thermalmoderator 5 Proton beam • Cryogenic moderator inset 4 Frequency, duty cycle Φ [1012cm-2s-1mA-!] 3 Target 2 Reflector 1 20 20 cm 17 October 2019 Page 10
HBS: multitarget source 384 Hz 96 Hz24 Hz 0 10 20 t[ms] 30 40 50 60 3 Target stations Repetition rate: 384 Hz 96 Hz 24 Hz Time frame: 2.6 ms 10.4 ms 41.7 ms Ion pulse length: 52 µs 208 µs 832 µs Duty cycle: 2 % Page 11
Pulse width optimization 200 µs built-up 200 µs decay Integral constant
Extraction channels Neutronic spectra Thermic Extraction Channel Crogenic insert
Extraction channels Neutronic spectra
Cryogenic moderator optimization Para-hydrogen moderator
Reflectometer Selene concept [J. Stahn et al., Eur. Phys. J. Appl. Phys. (2012) 58: 11001] Polarizator Sample Spin-Flipper Source Diaphragma Frame Overlap Chopper Slit System Detector
Reflectometer Selene concept [J. Stahn et al., Eur. Phys. J. Appl. Phys. (2012) 58: 11001] Polarizator Sample Spin-Flipper Source Diaphragma Frame Overlap Chopper Slit System Detector
Reflectometer Selene concept Transfere the whole divergence to the sample • Moderator: para-H2 • Frequency: 24 Hz → 833 µs • Divergence: 1.5 ° • Wavelength band: 7.4 Å • Wavelength resolution: 1.4 % - 5.1 % • Flux: 107 s-1cm-2 (High intensity mode) → Comparable to MARIA @ FRM II
PowDer Diffractometer Basic Instrument 2 m 60 m 25 m Sample BandwidthChopper Detector Double DiscChopper
PowDer Diffractometer Basic Instrument 2 m 60 m 25 m Sample BandwidthChopper Detector Double DiscChopper • Moderator: PE • Frequenzy: 96 Hz → 208 µs • Resolution Δd/d: 0.028 • Wavelength band: 0.69 Å • Brilliance 5*1010 cm-2s-1sr-1(mAs)-1
PowDer Diffractometer High Intensity 2 m 100 m 50 m Sample BandwidthChopper Detector Double DiscChopper • Moderator: PE • Frequenzy: 24 Hz → 833 µs • Resolution Δd/d: 0.0044 - 0.014 at 90° 0.011 – 0.12 at 7° • Wavelength band: 1.65 Å • Brilliance 4*109 cm-2s-1sr-1(mAs)-1
PowDer Diffractometer High Resolution 2 m 100 m 50 m Sample BandwidthChopper Detector Double DiscChopper • Moderator: PE • Frequenzy: 24 Hz → 833 µs • Resolution Δd/d: 0.0059 - 0.0017 at 90° 0.044 at 7° • Wavelength band: 1.65 Å • Brilliance 5*108 cm-2s-1sr-1(mAs)-1
Conclusion • Instrument developmentat CANS canmakeuseofnewdegreesoffreedom: • Spectrum • Pulse timing • High divergence, shortdistances • Trade betweenBrillianceandIntensity
Conclusion • Instrument developmentat CANS canmakeuseofnewdegreesoffreedom: • Spectrum • Pulse timing • High divergence, shortdistances • Trade betweenBrillianceandIntensity Outlook • Further optimization of TMR unit • Moderator materials like Methane, o/p-Hydrogen will be developed
HBS Team ZEA-1: Y. Bessler M. Butzek - Engineering IKP-4: O. Felden R. Gebel A. Lehrach D. Prasuhn - Nuclear physics M. Bai W. Barth - Accelerator S. Böhm J.P. Dabruck R. Nabbi - Nuclear simul. J. Baggemann Th. Brückel T. Cronert P.-E. Doege T. Gutberlet J. Li E. Mauerhofer M. Rimmler M. Strothmann U. Rücker J. Voigt P. Zakalek - coregroup:design, experimental verification, instrumentation C. Lange T. Langnickel Ch. Haberstroh M. Klaus S. Eisenhut - AKR-2, liquid H2 / HIM H. Podlech O. Meusel - Accelerator
HBS Team THANK YOU FOR YOUR ATTENTION ZEA-1: Y. Bessler M. Butzek - Engineering IKP-4: O. Felden R. Gebel A. Lehrach D. Prasuhn - Nuclear physics M. Bai W. Barth - Accelerator S. Böhm J.P. Dabruck R. Nabbi - Nuclear simul. J. Baggemann Th. Brückel T. Cronert P.-E. Doege T. Gutberlet J. Li E. Mauerhofer M. Rimmler M. Strothmann U. Rücker J. Voigt P. Zakalek - coregroup:design, experimental verification, instrumentation C. Lange T. Langnickel Ch. Haberstroh M. Klaus S. Eisenhut - AKR-2, liquid H2 / HIM H. Podlech O. Meusel - Accelerator