1 / 8

Clase 136

Clase 136. Ejercicios sobre la función logatrítmica. Ejercicio 1. Representa gráficamente la función g(x) = log 2 (x + 3 ) + 1 . Analiza sus propiedades. g(x) = log 2 (x + 3 ) + 1. y. Dom: x > – 3. Im: . Monotonía: creciente. 1. x. 0. 1. –3. –2.

Download Presentation

Clase 136

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Clase 136 Ejercicios sobre la función logatrítmica

  2. Ejercicio 1 Representa gráficamente la función g(x) = log2(x + 3) + 1. Analiza sus propiedades.

  3. g(x) = log2(x + 3) + 1 y Dom:x > – 3 Im: Monotonía:creciente 1 x 0 1 –3 –2 Cero: x0 = –2,5

  4. Cálculo del cero log2(x + 3) + 1 = 0 log2(x + 3) = – 1 x + 3 = 2 –1 x + 3 = 0,5 x = 0,5 – 3 x = – 2,5

  5. x4– 4x3+ 2x2+ 4x – 3 f(x) = log2 x2 – 2x Ejercicio 2 Determina el dominio de la función:

  6. f(x) = log2 x4– 4x3+ 2x2+ 4x – 3 x4– 4x3+ 2x2+ 4x – 3 x2 – 2x x2 – 2x –1 0 1 2 3 x < –1 ó 0 < x < 2 ; x1 ó x > 3 C.N. > 0 x1= 1doble (x – 1)2(x + 1)(x – 3) x2= –1 > 0 x3= 3 x(x – 2) C.D. x4= 0 x5= 2 + + + +

  7. x4– 4x3+ 2x2+ 4x – 3 = (x – 1)2(x2 – 2x – 3) = (x – 1)2(x – 3)(x +1) 1 1 –4 2 4 –3 1 1 –3 –1 3 1 –1 3 –3 0 1 –3 –2 1 0 –2 –3

  8. Para el estudio individual 1. Ejercicio 6(d) pág. 47 L.T. Onceno grado 2. Ejercicio 7 pág. 47 L.T. Onceno grado

More Related