970 likes | 1.15k Views
7.1 – Operations on Functions. Operation Definition. Operation Definition Sum . Operation Definition Sum ( f + g )( x ). Operation Definition Sum ( f + g )( x ) = f ( x ) + g ( x ). Operation Definition Sum ( f + g )( x ) = f ( x ) + g ( x )
E N D
Operation Definition Sum (f + g)(x)
Operation Definition Sum (f + g)(x) = f(x) + g(x)
Operation Definition Sum (f + g)(x) = f(x) + g(x) Difference
Operation Definition Sum (f + g)(x) = f(x) + g(x) Difference (f – g)(x) =
Operation Definition Sum (f + g)(x) = f(x) + g(x) Difference (f – g)(x) = f(x) – g(x)
Operation Definition Sum (f + g)(x) = f(x) + g(x) Difference (f – g)(x) = f(x) – g(x) Product
Operation Definition Sum (f + g)(x) = f(x) + g(x) Difference (f – g)(x) = f(x) – g(x) Product (f·g)(x) =
Operation Definition Sum (f + g)(x) = f(x) + g(x) Difference (f – g)(x) = f(x) – g(x) Product (f·g)(x) = f(x) ·g(x)
Operation Definition Sum (f + g)(x) = f(x) + g(x) Difference (f – g)(x) = f(x) – g(x) Product (f·g)(x) = f(x) ·g(x) Quotient f (x) = g
Operation Definition Sum (f + g)(x) = f(x) + g(x) Difference (f – g)(x) = f(x) – g(x) Product (f·g)(x) = f(x) ·g(x) Quotient f (x) = f(x) gg(x)
Ex. 1 Find (f + g)(x), (f – g)(x), (f·g)(x), & f (x) for f(x) g and g(x) if f(x) = 2x – 3 and g(x) = 4x + 9
Ex. 1 Find (f + g)(x), (f – g)(x), (f·g)(x), & f (x) for f(x) g and g(x) if f(x) = 2x – 3 and g(x) = 4x + 9 (f + g)(x)
Ex. 1 Find (f + g)(x), (f – g)(x), (f·g)(x), & f (x) for f(x) g and g(x) if f(x) = 2x – 3 and g(x) = 4x + 9 (f + g)(x) = f(x) + g(x)
Ex. 1 Find (f + g)(x), (f – g)(x), (f·g)(x), & f (x) for f(x) g and g(x) if f(x) = 2x – 3 and g(x) = 4x + 9 (f + g)(x) = f(x) + g(x)
Ex. 1 Find (f + g)(x), (f – g)(x), (f·g)(x), & f (x) for f(x) g and g(x) if f(x) = 2x – 3 and g(x) = 4x + 9 (f + g)(x) = f(x) + g(x) = (2x – 3)
Ex. 1 Find (f + g)(x), (f – g)(x), (f·g)(x), & f (x) for f(x) g and g(x) if f(x) = 2x – 3 and g(x) = 4x + 9 (f + g)(x) = f(x) + g(x) = (2x – 3)
Ex. 1 Find (f + g)(x), (f – g)(x), (f·g)(x), & f (x) for f(x) g and g(x) if f(x) = 2x – 3 and g(x) = 4x + 9 (f + g)(x) = f(x) + g(x) = (2x – 3) + (4x + 9)
Ex. 1 Find (f + g)(x), (f – g)(x), (f·g)(x), & f (x) for f(x) g and g(x) if f(x) = 2x – 3 and g(x) = 4x + 9 (f + g)(x) = f(x) + g(x) = (2x – 3) + (4x + 9) = 6x + 6
Ex. 1 Find (f + g)(x), (f – g)(x), (f·g)(x), & f (x) for f(x) g and g(x) if f(x) = 2x – 3 and g(x) = 4x + 9 (f + g)(x) = f(x) + g(x) = (2x – 3) + (4x + 9) = 6x – 6 (f – g)(x)
Ex. 1 Find (f + g)(x), (f – g)(x), (f·g)(x), & f (x) for f(x) g and g(x) if f(x) = 2x – 3 and g(x) = 4x + 9 (f + g)(x) = f(x) + g(x) = (2x – 3) + (4x + 9) = 6x – 6 (f – g)(x) = f(x) – g(x)
Ex. 1 Find (f + g)(x), (f – g)(x), (f·g)(x), & f (x) for f(x) g and g(x) if f(x) = 2x – 3 and g(x) = 4x + 9 (f + g)(x) = f(x) + g(x) = (2x – 3) + (4x + 9) = 6x – 6 (f – g)(x) = f(x) – g(x)
Ex. 1 Find (f + g)(x), (f – g)(x), (f·g)(x), & f (x) for f(x) g and g(x) if f(x) = 2x – 3 and g(x) = 4x + 9 (f + g)(x) = f(x) + g(x) = (2x – 3) + (4x + 9) = 6x – 6 (f – g)(x) = f(x) – g(x) = (2x – 3)
Ex. 1 Find (f + g)(x), (f – g)(x), (f·g)(x), & f (x) for f(x) g and g(x) if f(x) = 2x – 3 and g(x) = 4x + 9 (f + g)(x) = f(x) + g(x) = (2x – 3) + (4x + 9) = 6x – 6 (f – g)(x) = f(x) – g(x) = (2x – 3)
Ex. 1 Find (f + g)(x), (f – g)(x), (f·g)(x), & f (x) for f(x) g and g(x) if f(x) = 2x – 3 and g(x) = 4x + 9 (f + g)(x) = f(x) + g(x) = (2x – 3) + (4x + 9) = 6x – 6 (f – g)(x) = f(x) – g(x) = (2x – 3) – (4x + 9)
Ex. 1 Find (f + g)(x), (f – g)(x), (f·g)(x), & f (x) for f(x) g and g(x) if f(x) = 2x – 3 and g(x) = 4x + 9 (f + g)(x) = f(x) + g(x) = (2x – 3) + (4x + 9) = 6x – 6 (f – g)(x) = f(x) – g(x) = (2x – 3) – (4x + 9)
Ex. 1 Find (f + g)(x), (f – g)(x), (f·g)(x), & f (x) for f(x) g and g(x) if f(x) = 2x – 3 and g(x) = 4x + 9 (f + g)(x) = f(x) + g(x) = (2x – 3) + (4x + 9) = 6x – 6 (f – g)(x) = f(x) – g(x) = (2x – 3) – (4x + 9) = 2x – 3 –4x
Ex. 1 Find (f + g)(x), (f – g)(x), (f·g)(x), & f (x) for f(x) g and g(x) if f(x) = 2x – 3 and g(x) = 4x + 9 (f + g)(x) = f(x) + g(x) = (2x – 3) + (4x + 9) = 6x – 6 (f – g)(x) = f(x) – g(x) = (2x – 3) – (4x + 9) = 2x – 3 – 4x– 9
Ex. 1 Find (f + g)(x), (f – g)(x), (f·g)(x), & f (x) for f(x) g and g(x) if f(x) = 2x – 3 and g(x) = 4x + 9 (f + g)(x) = f(x) + g(x) = (2x – 3) + (4x + 9) = 6x – 6 (f – g)(x) = f(x) – g(x) = (2x – 3) – (4x + 9) = 2x – 3 – 4x – 9 = -2x – 12
(f·g)(x) = f(x) ·g(x) = (2x – 3)
(f·g)(x) = f(x) ·g(x) = (2x – 3)
(f·g)(x) = f(x) ·g(x) = (2x – 3)(4x + 9)
(f·g)(x) = f(x) ·g(x) = (2x – 3)(4x + 9) = 8x2+ 18x – 12x – 27
(f·g)(x) = f(x) ·g(x) = (2x – 3)(4x + 9) = 8x2+ 18x – 12x – 27 = 8x2+ 6x – 27
(f·g)(x) = f(x) ·g(x) = (2x – 3)(4x + 9) = 8x2+ 18x – 12x – 27 = 8x2+ 6x – 27 f (x) g
(f·g)(x) = f(x) ·g(x) = (2x – 3)(4x + 9) = 8x2+ 18x – 12x – 27 = 8x2+ 6x – 27 f (x) = f(x) gg(x)
(f·g)(x) = f(x) ·g(x) = (2x – 3)(4x + 9) = 8x2+ 18x – 12x – 27 = 8x2+ 6x – 27 f (x) = f(x) gg(x) = 2x – 3 4x + 9
(f·g)(x) = f(x) ·g(x) = (2x – 3)(4x + 9) = 8x2+ 18x – 12x – 27 = 8x2+ 6x – 27 f (x) = f(x) gg(x) = 2x – 3 4x + 9 *Factor & Simplify if possible!
Composite Function - taking the function
Composite Function - taking the function of a function
Composite Function - taking the function of a function [f°g(x)]
Composite Function - taking the function of a function [f°g(x)] = f[g(x)]
Composite Function - taking the function of a function [f°g(x)] = f[g(x)] Ex. 2 Find [f°g(x)] and [g°f(x)] for the functions f(x) = x + 3 and g(x) = x2+ x – 1.
Composite Function - taking the function of a function [f°g(x)] = f[g(x)] Ex. 2 Find [f°g(x)] and [g°f(x)] for the functions f(x) = x + 3 and g(x) = x2+ x – 1. [f°g(x)] = f[g(x)]