380 likes | 556 Views
Regression Shinkage for Sparse Projection Learning. ------ Graduate Celebration Report. Reporter: Zhihui Lai Supervised by Prof. Zhong Jin 2011-6. Outline. A review Recommendations Regressions basic sparse learning methods My works Conclusions Future works
E N D
Regression Shinkage for Sparse Projection Learning ------Graduate Celebration Report Reporter: Zhihui Lai Supervised by Prof. Zhong Jin 2011-6
Outline • A review • Recommendations • Regressions • basic sparse learning methods • My works • Conclusions • Future works • Possible hot points in the future • Some suggestion on the younger
Sparse subspace learning-------reported at June 2009 A review Jieping Ye 2010 • Fast algorithm • Sparse visual attention system • Sparseness for one class problem • Sparse representation and explanation for gene data • Super-solution images and dictionary learning • Feature extraction and classification Cairong Zhao and I Chunhou Zheng, Lei Zhang Lei Zhang, Lili Wang and Guangwei Gao Jian Yang, Zhenghong GU, and I
10 Recommended References (1) • P.N. Belhumeur, J.P. Hespanha, D.J. Kriengman, Eigenfaces vs. Fisherfaces: recognition using class specific linear projection,IEEE Trans. Pattern Anal. Mach. Intelligence 19 (7) (1997)711–720. • X.F. He, S. Yan, Y. Hu, P. Niyogi, H.J. Zhang, Face recognition using laplacianfaces, IEEE Trans. Pattern Anal. Mach. Intelligence 27 (3) (2005) 328–340. +++++and its related papers • 2DPCA,UDP(T-PAMI) • ULDA OLDA (PR), NLDA • Graph embedding (T-PAMI)
10 Recommended References (2) • J. Wright, A.Y. Yang,..,Yi Ma,”Robust face recgontition via sparse represetation, T-PAMI 2009. ++++++and its 20 related references! • B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, “Least angle regression,” Annals of Statistics, vol. 32, 2004, pp. 407-499. • R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol. 58, 1996, pp. 267-288. • Zou, H. (Standford), Hastie, T., & Tibshirani, R. (2004). Sparse principal component analysis (Technical Report). Statistics Department, Stanford University. • D. Cai, X. He, J.Han, Spectral Regression: A Unified Approach for Sparse Subspace Learning, Proc. 2007 Int. Conf. on Data Mining (ICDM 07), Omaha, NE, Oct. 2007.
Background---sparseness is needed • One key drawback of PCA is its lack of sparseness. • Sparse representations are generally desirable. • Reduce computational cost and promote better generalization in learning algorithms. • In many applications, the coordinate axis involved in the factors have a direct physical interpretation. • In financial or biological applications, each axis might correspond to a specific asset or gene.
The methods for sparse solutions CVX, L1-magic,L1_eq SDP,QCQP, GPRS,SLEP, Lasso,Glasso, Elastic net
regressions • Gaussian ProcessRegression, • Support Vector Regression, • Regression Trees, • and Nearest Neighbor Regression • OMP---Orthogonal OMP UNSOLVED!!
some useful journals • Comm. Pure and Applied Math. • SIAM Rev. • J. Am. Statistical Assoc. • Comm. Pure and Applied Math. • IEEE Trans. Information Theory • Theoretical Computer Science • Foundations of Computational Math
基本投影理论与算法 ----PCA • 思 想:最小化重构误差,保留最大方差 几何意义:使投影后所得特征的总体散度最大
基本投影理论与算法 ----SPCA(1) SVD分解 • 思 想:在旋转不变性的原则下最小化子空间之间的投影误差 几何意义:在子空间之间使同一模式点的像与原像之差达到最小化
基本投影理论与算法----SPCA(2) 思 想:在旋转不变性的原则下最小化稀疏子空间之间的投影误差 几何意义:寻找一个稀疏线性变换,使得模式点在稀疏子空 间的像及其在原子空间的像之差达到最小化
基本投影理论与算法 ----SDA(1) Y是只含0-1值的代表各类属性的m*c阶变量矩阵 • 思 想:把类属变量看成量化变量来处理,并写成回归的形式 Optimal scoring 惩罚矩阵 Panelized discriminant analysis 几何意义:在低维子空间中逼近与类相关的量化变量
基本投影理论与算法 ----SDA(2) 思 想:把类属变量看成量化变量来处理,并写成含L1范数回归的形式 最优的稀疏投影通过迭代Elastic Net和SVD分解得到 几何意义:在低维子空间中逼近与类相关的量化变量
基于图的稀疏投影学习模型 现有的稀疏学习模型(USSL): 本文提出的稀疏鉴别投影(SLDP)学习模型:
稀疏投影向量的比较及其语义解释 实验与分析(AR人脸数据集) AR人脸数据集中的一张人脸图像 由SLDP (左)和USSL(右)算法得到的稀疏人脸子空间的二值图像,此时K=400,白点表示非0元,黑色区域为0元素
基于向量的稀疏投影学习小结 • 优点:稀疏特征提取方法还能给出特征层面上的语义解释,它可以发现最有效的鉴别特征用于分类,使我们知道到底哪些特征对分类起到了关键作用。 • 缺点: • 计算复杂度高,并且当非零元素较多时,这些算法往往比较耗时。 • 需要大量的投影才能有效地分开各个类,进一步增加了计算负担。 • 些方法用于人脸(图像)识别时,所得的投影轴仍然难于给出较为直观的、合理的人脸语义上的解释 ,投影向量基本不再含有图像对像的属性 • 稀疏鉴别投影方法与紧致鉴别投影理论上的联系仍然没有得到论证
基于流形学习的稀疏二维特征提取算法框架 基于图像矩阵的二维紧致投影 学习方法: 本文所提出的稀疏投影学习算法框架:
快速图谱特征分解 这两个定理为快速的稀疏回归提供了思路!
基于图像矩阵的二维回归拓展 基于图像矩阵的二维脊回归、二维Lasso回归、二维Elastic Net回归分别如下:
Sparsefaces:无监督S2DLPP算法 S2DLPP的目标函数: S2DLPP的算法过程:
算法时间复杂度与空间复杂度的比较 时间复杂性 极大提高学习速度 空间复杂性 节省空间
Sparsefaces方法的变换矩阵 在Yale人脸数据集上的实验与分析 从左到右: 2DPCA“脸”、 2DLDA“脸”、 2DLPP“脸”、 USSL“脸” S2DLPP所学习得到的稀疏“脸”图像,其中 K=2:2:10 稀疏脸的二值“脸”图像,白色点代表0元素,黑色部分为非0元素
无监督S2DLPP算法的特性 节省20%的时间 快速!
S2DLPP算法对时间光照表情变化的有效性 本文提出的S2DLPP算法效果 在AR人脸数据集上的实验比较 第一次采集的前10幅图像用于训练,第二次采集的前10幅图像用于测试 S2DLPP对光照、表情及时间变化的鲁棒性 快速!
S2DLPP在FERET数据库上的实验 200个人的1400张人脸图像,前5张图像用于训练,后两张图像用于测试,图像大小为40*40 比基于向量的稀疏学习方法快近100倍!
监督的S2DLDP算法 • S2DLDP的目标函数: S2DLDP算法过程:
S2DLDP的变换矩阵特性 在Yale人脸数据集上的实验 从左到右:2DPCA“脸”、 2DLDA“脸”、 2DLPP“脸”、 2DLGEDA“脸” S2DLDP所学习得到的稀疏“脸” , K=2:2:10 S2DLDP的二值“脸”,白色点代表非0元素,黑色部分为0元素
S2DLDP的橹棒性 含光照、表情与时间的变化 含光照表情的变化 S2DLDP在Yale人脸数据库上识别率与非0元个数及维数的情况 在AR人脸数据库上各方法的识别率与维数的变化情况
互相垂直的稀疏投影学习模型 现有的稀疏学习模型(USSL): 花了我大半年才发现它的解! 互相垂直的限制!
multilinear sparse regression on manifolds Graph on manifolds
Conclusions • Sparseness might be necessary! • Sparseness can be more efficient! • Less atoms (loadings), higher accuracy!
Possible hot points in the future! • Effective dictionary learning for classification • Classifier (classification) based optimal dimensionality reduction • Information theory (entropy) based discriminant analysis (such as AIDA) • Game theory based discriminant analysis • (Multilinear) sparse projections and its applications for biometrics and interpretations (such as on gene)
Some suggestion on the younger • Elements: step by step, smaller to bigger • Writings: faster is more harmful! Careful Rewritings! Details decide the success or failure! 3~4 paper per year! • Submitions: comment on it and just do it! • Paper (40%)+writings(30%)+reviewers(30%)=1 • Ours visual angle decides ours height!
Thinks! ? any question?