1 / 38

Reporter: Zhihui Lai Supervised by Prof. Zhong Jin 2011-6

Regression Shinkage for Sparse Projection Learning. ------ Graduate Celebration Report. Reporter: Zhihui Lai Supervised by Prof. Zhong Jin 2011-6. Outline. A review Recommendations Regressions basic sparse learning methods My works Conclusions Future works

lapis
Download Presentation

Reporter: Zhihui Lai Supervised by Prof. Zhong Jin 2011-6

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Regression Shinkage for Sparse Projection Learning ------Graduate Celebration Report Reporter: Zhihui Lai Supervised by Prof. Zhong Jin 2011-6

  2. Outline • A review • Recommendations • Regressions • basic sparse learning methods • My works • Conclusions • Future works • Possible hot points in the future • Some suggestion on the younger

  3. Sparse subspace learning-------reported at June 2009 A review Jieping Ye 2010 • Fast algorithm • Sparse visual attention system • Sparseness for one class problem • Sparse representation and explanation for gene data • Super-solution images and dictionary learning • Feature extraction and classification Cairong Zhao and I Chunhou Zheng, Lei Zhang Lei Zhang, Lili Wang and Guangwei Gao Jian Yang, Zhenghong GU, and I

  4. 10 Recommended References (1) • P.N. Belhumeur, J.P. Hespanha, D.J. Kriengman, Eigenfaces vs. Fisherfaces: recognition using class specific linear projection,IEEE Trans. Pattern Anal. Mach. Intelligence 19 (7) (1997)711–720. • X.F. He, S. Yan, Y. Hu, P. Niyogi, H.J. Zhang, Face recognition using laplacianfaces, IEEE Trans. Pattern Anal. Mach. Intelligence 27 (3) (2005) 328–340. +++++and its related papers • 2DPCA,UDP(T-PAMI) • ULDA OLDA (PR), NLDA • Graph embedding (T-PAMI)

  5. 10 Recommended References (2) • J. Wright, A.Y. Yang,..,Yi Ma,”Robust face recgontition via sparse represetation, T-PAMI 2009. ++++++and its 20 related references! • B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, “Least angle regression,” Annals of Statistics, vol. 32, 2004, pp. 407-499. • R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol. 58, 1996, pp. 267-288. • Zou, H. (Standford), Hastie, T., & Tibshirani, R. (2004). Sparse principal component analysis (Technical Report). Statistics Department, Stanford University. • D. Cai, X. He, J.Han, Spectral Regression: A Unified Approach for Sparse Subspace Learning, Proc. 2007 Int. Conf. on Data Mining (ICDM 07), Omaha, NE, Oct. 2007.

  6. Background---sparseness is needed • One key drawback of PCA is its lack of sparseness. • Sparse representations are generally desirable. • Reduce computational cost and promote better generalization in learning algorithms. • In many applications, the coordinate axis involved in the factors have a direct physical interpretation. • In financial or biological applications, each axis might correspond to a specific asset or gene.

  7. The methods for sparse solutions CVX, L1-magic,L1_eq SDP,QCQP, GPRS,SLEP, Lasso,Glasso, Elastic net

  8. regressions • Gaussian ProcessRegression, • Support Vector Regression, • Regression Trees, • and Nearest Neighbor Regression • OMP---Orthogonal OMP UNSOLVED!!

  9. Why L1 norm learning?

  10. some useful journals • Comm. Pure and Applied Math. • SIAM Rev. • J. Am. Statistical Assoc. • Comm. Pure and Applied Math. • IEEE Trans. Information Theory • Theoretical Computer Science • Foundations of Computational Math

  11. 基本投影理论与算法 ----PCA • 思 想:最小化重构误差,保留最大方差 几何意义:使投影后所得特征的总体散度最大

  12. 基本投影理论与算法 ----SPCA(1) SVD分解 • 思 想:在旋转不变性的原则下最小化子空间之间的投影误差 几何意义:在子空间之间使同一模式点的像与原像之差达到最小化

  13. 基本投影理论与算法----SPCA(2) 思 想:在旋转不变性的原则下最小化稀疏子空间之间的投影误差 几何意义:寻找一个稀疏线性变换,使得模式点在稀疏子空 间的像及其在原子空间的像之差达到最小化

  14. 基本投影理论与算法 ----SDA(1) Y是只含0-1值的代表各类属性的m*c阶变量矩阵 • 思 想:把类属变量看成量化变量来处理,并写成回归的形式 Optimal scoring 惩罚矩阵 Panelized discriminant analysis 几何意义:在低维子空间中逼近与类相关的量化变量

  15. 基本投影理论与算法 ----SDA(2) 思 想:把类属变量看成量化变量来处理,并写成含L1范数回归的形式 最优的稀疏投影通过迭代Elastic Net和SVD分解得到 几何意义:在低维子空间中逼近与类相关的量化变量

  16. 基于图的稀疏投影学习模型 现有的稀疏学习模型(USSL): 本文提出的稀疏鉴别投影(SLDP)学习模型:

  17. 稀疏投影向量的比较及其语义解释 实验与分析(AR人脸数据集) AR人脸数据集中的一张人脸图像 由SLDP (左)和USSL(右)算法得到的稀疏人脸子空间的二值图像,此时K=400,白点表示非0元,黑色区域为0元素

  18. 基于向量的稀疏投影学习小结 • 优点:稀疏特征提取方法还能给出特征层面上的语义解释,它可以发现最有效的鉴别特征用于分类,使我们知道到底哪些特征对分类起到了关键作用。 • 缺点: • 计算复杂度高,并且当非零元素较多时,这些算法往往比较耗时。 • 需要大量的投影才能有效地分开各个类,进一步增加了计算负担。 • 些方法用于人脸(图像)识别时,所得的投影轴仍然难于给出较为直观的、合理的人脸语义上的解释 ,投影向量基本不再含有图像对像的属性 • 稀疏鉴别投影方法与紧致鉴别投影理论上的联系仍然没有得到论证

  19. 基于流形学习的稀疏二维特征提取算法框架 基于图像矩阵的二维紧致投影 学习方法: 本文所提出的稀疏投影学习算法框架:

  20. 快速图谱特征分解 这两个定理为快速的稀疏回归提供了思路!

  21. 基于图像矩阵的二维回归拓展 基于图像矩阵的二维脊回归、二维Lasso回归、二维Elastic Net回归分别如下:

  22. Sparsefaces:无监督S2DLPP算法 S2DLPP的目标函数: S2DLPP的算法过程:

  23. 算法时间复杂度与空间复杂度的比较 时间复杂性 极大提高学习速度 空间复杂性 节省空间

  24. Sparsefaces方法的变换矩阵 在Yale人脸数据集上的实验与分析 从左到右: 2DPCA“脸”、 2DLDA“脸”、 2DLPP“脸”、 USSL“脸” S2DLPP所学习得到的稀疏“脸”图像,其中 K=2:2:10 稀疏脸的二值“脸”图像,白色点代表0元素,黑色部分为非0元素

  25. 无监督S2DLPP算法的特性 节省20%的时间 快速!

  26. S2DLPP算法对时间光照表情变化的有效性 本文提出的S2DLPP算法效果 在AR人脸数据集上的实验比较 第一次采集的前10幅图像用于训练,第二次采集的前10幅图像用于测试 S2DLPP对光照、表情及时间变化的鲁棒性 快速!

  27. S2DLPP在FERET数据库上的实验 200个人的1400张人脸图像,前5张图像用于训练,后两张图像用于测试,图像大小为40*40 比基于向量的稀疏学习方法快近100倍!

  28. 监督的S2DLDP算法 • S2DLDP的目标函数: S2DLDP算法过程:

  29. S2DLDP的变换矩阵特性 在Yale人脸数据集上的实验 从左到右:2DPCA“脸”、 2DLDA“脸”、 2DLPP“脸”、 2DLGEDA“脸” S2DLDP所学习得到的稀疏“脸” , K=2:2:10 S2DLDP的二值“脸”,白色点代表非0元素,黑色部分为0元素

  30. S2DLDP的橹棒性 含光照、表情与时间的变化 含光照表情的变化 S2DLDP在Yale人脸数据库上识别率与非0元个数及维数的情况 在AR人脸数据库上各方法的识别率与维数的变化情况

  31. 互相垂直的稀疏投影学习模型 现有的稀疏学习模型(USSL): 花了我大半年才发现它的解! 互相垂直的限制!

  32. multilinear sparse regression:MSPCA

  33. MSPCA algorithm

  34. multilinear sparse regression on manifolds Graph on manifolds

  35. Conclusions • Sparseness might be necessary! • Sparseness can be more efficient! • Less atoms (loadings), higher accuracy!

  36. Possible hot points in the future! • Effective dictionary learning for classification • Classifier (classification) based optimal dimensionality reduction • Information theory (entropy) based discriminant analysis (such as AIDA) • Game theory based discriminant analysis • (Multilinear) sparse projections and its applications for biometrics and interpretations (such as on gene)

  37. Some suggestion on the younger • Elements: step by step, smaller to bigger • Writings: faster is more harmful! Careful Rewritings! Details decide the success or failure! 3~4 paper per year! • Submitions: comment on it and just do it! • Paper (40%)+writings(30%)+reviewers(30%)=1 • Ours visual angle decides ours height!

  38. Thinks! ? any question?

More Related