190 likes | 279 Views
Topics and Transitions: Investigation of User Search Behavior. Xuehua Shen, Susan Dumais, Eric Horvitz. What’s next for the user ?. Outline. Problem Automatic Topic Tagging Predictive models Evaluation Experiments and analysis Conclusion and future directions. Problem.
E N D
Topics and Transitions: Investigation of User Search Behavior Xuehua Shen, Susan Dumais, Eric Horvitz
Outline • Problem • Automatic Topic Tagging • Predictive models • Evaluation • Experiments and analysis • Conclusion and future directions
Problem • Opportunity: Personalizing search • Focus: What topics do users explore? • How similar are users to each other, to special groups, and to the population at large? • Data, data, data… • MSN search engine log • Query & clickthrough • 87,449,277 rows, 36,895,634 URLs 5% sample from MSN logs, 05/29-06/29 • Create predictive models of topic of queries and urls visited
Automatic Topic Tagging • ODP (Open Directory Project) manually categorize URLs • MSN extended methods with heuristics to cover more urls • We develop a tool to automatically tag every URL in the log 15 top-level categories Arts, Business, Computers, Games, Health, Home, Kids_and_Teens, News, Recreation, Reference, Science, Shopping, Society, Sports, Adult
multiple tagging Avg: 1.38 tags per URL A Snippet
Predictive Model: User Perspective • Individual model Use only individual clickthrough to build a model for each user’s predictions • Group model Group similar users to build a model for each group’s prediction (e.g., group users with same ‘max topic’ clickthrough) • Population model Use clickthrough data for all users to build a model for all users predictions
? ? ? Predictive Model: Considering Time Dependence • Marginal model • Base probability for topics • Markov model • Probability of moving from one topic to another • Time-interval-specific Markov model • User search behavior has two different patterns
Evaluation Metrics • KL (Kullback-Leibler) Divergence • Likelihood • Top K Match the real top K topics and predicted top K’ topics
Experiment • 5 weeks data (05/22-06/29) • Build models based on different subsets of total data • Do prediction for a “holdout set”: Other weeks data
Results from Basic Experiment Marginal model: Individual model has best performance Markov model: Consistently better than corresponding marginal model Markov model: Individual model has no best performance: Why?
Results: Training Data Size Greater amounts of training data Markov (same for Marginal) models improve But: Individual Markov model still can’t beat Population Markov model
Results: Smoothing Using population Markov model to smooth helps individual Markov model But: smoothed individual Markov model still can’t outperform population model
Results: Time Decay Effect When time of training data decays, the prediction accuracy decreases
Results: Time-Interval-Specific Markov Model Markov Models capture short time access pattern better
Conclusion • Use ODP categorization to tag URLs visited by users • Construct marginal and Markov models using tagged URLs • Explore performance of marginal and Markov models to predict transitions among topics • Set of results relating topic transition behaviors of population, groups, and specific users
Directions • Study of reliability, failure modes of automated tagging process (use of expert human taggers) • Combination of query and clickthrough topics • Formulating and studying different groups of people • Topic-centric evaluation • Application of results in personalization of search experience • Interpretation of topics associated with queries • Ranking of results • Designs for client UI
Acknowledgement • Susan and Eric for great mentoring and discussion • Johnson and Muru for development support • Haoyong for MSN Search Engine development environment