350 likes | 476 Views
Unit 4, Chapter 11. CPO Science Foundations of Physics. Unit 4: Energy and Momentum. Chapter 11 Energy Flow and Power. 11.1 Efficiency 11.2 Energy and Power 11.3 Energy Flow in Systems. Chapter 11 Objectives. Give an example of a process and the efficiency of a process.
E N D
Unit 4, Chapter 11 CPO Science Foundations of Physics
Unit 4: Energy and Momentum Chapter 11 Energy Flow and Power • 11.1 Efficiency • 11.2 Energy and Power • 11.3 Energy Flow in Systems
Chapter 11 Objectives • Give an example of a process and the efficiency of a process. • Calculate the efficiency of a mechanical system from energy and work. • Give examples applying the concept of efficiency to technological, natural and biological systems. • Calculate power in technological, natural, and biological systems. • Evaluate power requirements from considerations of force, mass, speed, and energy. • Sketch an energy flow diagram of a technological, natural, or biological system.
Chapter 11 Vocabulary Terms • efficiency • process • input • output • food calorie • reversible • irreversible • power • horsepower • producer • energy • flow • watt • cycle • food chain • power transmission • herbivore • carnivore • decomposer • food web • energy conversion • steady state • ecosystem
Key Question: How efficient is the straight track? 11.1 Efficiency *Students read Section 11.1 AFTER Investigation 11.1
11.1 Efficiency • Efficiency is defined for a process. • A process is any activity that changes things and can be described in terms of input and output. • The efficiency of a process is the ratio of output to input.
11.1 Efficiency Efficiency can also mean the ratio of energy output divided by energy input. Energy output (J) e = Eo Ei Efficiency Energy input (J)
11.1 Efficiency • According to the law of conservation of energy, energy cannot ever be lost, so the total efficiency of any process is 100%. • The work output is reduced by the work that is converted to heat, resulting in lower efficiency.
11.1 Calculate efficiency • A 12-gram paper airplane is launched at a speed of 6.5 m/sec with a rubber band. • The rubber band is stretched with a force of 10 N for a distance of 15 cm. • Calculate the efficiency of the process of launching the plane.
11.1 Efficiency in natural systems • Energy drives all the processes in nature, from winds in the atmosphere to nuclear reactions occurring in the cores of stars. • In the environment, efficiency is interpreted as the fraction of energy that goes into a particular process.
11.1 Efficiency in biological systems • In terms of output work, the energy efficiency of living things is typically very low. • Almost all of the energy in the food you eat becomes heat and waste products; very little becomes physical work.
11.1 Efficiency in biological systems • Think of time as an arrow pointing from the past into the future. • All processes move in the direction of the arrow, and never go backward.
11.1 Efficiency in biological systems • Since processes in the universe almost always lose a little energy to friction, time cannot run backward. • If you study physics further, this idea connecting energy and time has many other implications.
Key Question: How powerful are you? 11.2 Energy and Power *Students read Section 11.2 AFTER Investigation 11.2
11.2. Energy and Power • It makes a difference how fast you do work.
11.2 Power • A unit of power is called a watt. • Another unit more familiar to you is horsepower. • One horsepower (the avg power output of a horse) is equal to 746 watts.
11.2 Power Power is equal to the amount of work done divided by the time it takes to do the work. Change in work or energy (J) P = E t Power (W) Change in time (sec)
11.2 Calculate power • A 70 kg person goes up stairs 5 m high in 30 sec. • a) How much power does the person need to use? • b) Compare the power used with a 100-watt light bulb.
P = F . v 11.2 Power • Another way to express power is as a multiple of force and it's velocity, if the velocity and force are both vectors in the same direction. Power (W) Velocity (m/sec) Force (N)
11.2 Power in human technology • You probably use technology with a wide range of power every day. • Machines are designed to use the appropriate amount of power to create enough force to do work they are designed to do.
11.2 Estimate power • A fan uses a rotating blade to move air. • How much power is used by a fan that moves 2 m3 of air each second at a speed of 3 m/sec? Assume air is initially at rest and has a density of 1 kg/m3. • Fans are inefficient; assume an efficiency of 10 %.
11.2 Power in natural systems • Natural systems exhibit a much greater range of power than human technology • The sun has a total power output of 3.8 × 1026 W. • The power received from the sun is what drives the weather on Earth.
11.2 Power in biological systems • 200 years ago, a person’s own muscles and those of their horses were all anyone had for power. • Today, the average lawn mower has a power of 2,500 watts—the equivalent power of three horses plus three people. • Most of the power output of animals takes the form of heat. • The output power from plants is input power for animals.
11.2 Estimate power • An average diet includes 2,500 food calories/day. • Calculate the average power this represents in watts over a 24-hour period. • One food calorie equals 4,187 joules.
11.3 Energy flow in systems Energy flows almost always involve energy conversions. To understanding an energy flow: • Write down the forms that the energy takes. • Diagram the flow of energy from start to finish for all the important processes that take place in the system. • Try to estimate how much energy is involved and what are the efficiencies of each energy conversion.
11.3 Energy flow in systems • A pendulum is a system in which a mass swings back and forth on a string. • There are 3 chief forms of energy: potential energy, kinetic energy, and heat loss from friction.
11.3 Energy flow in human technology The energy flow in technology can usually be broken down into four types of processes: • Storage ex. batteries, springs, height, pressure • Conversion ex. a pump converting mechanical energy to fluid energy • Transmission ex. through wires, tubes, gears, levers • Output ex. heat, light, electricity
11.3 Energy flow • The energy flow diagram for a rechargeable electric drill shows losses to heat or friction at each step.
11.3 Energy flow in natural systems • The energy flows in technology tend to start and stop. • Many of the energy flows in nature occur in cycles. • Water is a good example.
11.3 Energy flow in natural systems • A food chain is a series of processes through which energy and nutrients are transferred between living things. • A food chain is like one strand in a food web. • A food web connects all the producers and consumers of energy in an ecosystem.
11.3 Energy flow in natural systems • The energy pyramid is a good way to show how energy moves through an ecosystem.
Key Question: Where did the energy go? 11.3 Energy Flow in Systems *Students read Section 11.3 BEFORE Investigation 11.3