520 likes | 679 Views
Arenes : compounds containing both aliphatic and aromatic parts. Alkylbenzenes Alkenylbenzenes Alkynylbenzenes Etc. Emphasis on the effect that one part has on the chemistry of the other half. Reactivity & orientation. Example: ethylbenzene EAS in the aromatic part
E N D
Arenes: compounds containing both aliphatic and aromatic parts. Alkylbenzenes Alkenylbenzenes Alkynylbenzenes Etc. Emphasis on the effect that one part has on the chemistry of the other half. Reactivity & orientation
Example: ethylbenzene EAS in the aromatic part -CH2CH3 activates and directs ortho- & para- Free radical halogenation in the side chain -C6H5 activates and directs benzyl
Alkylbenzenes, nomenclature: Special names
Use of phenyl C6H5- = “phenyl” do not confuse phenyl (C6H5-) with benzyl (C6H5CH2-)
Alkylbenzenes, syntheses: • Friedel-Crafts alkylation • Modification of a side chain: • a) addition of hydrogen to an alkene • b) reduction of an alkylhalide • i) hydrolysis of Grignard reagent • ii) active metal and acid • c) Corey-House synthesis
Friedel-Crafts: Ar-H + R-X, AlCl3 Ar-R + HX Ar-H + R-OH, H+ Ar-R + H2O Ar-H + alkene, H+ Ar-R
Friedel-Crafts limitations: • Polyalkylation • Possible rearrangement • R-X cannot be Ar-X • NR when the benzene ring is less reactive than bromobenzene • NR with -NH2, -NHR, -NR2 groups
polyalkylation The alkyl group activates the ring making the products more reactive that the reactants leading to polyalkylation. Use of excess aromatic compound minimizes polyalkylation in the lab.
The electrophile in Friedel Crafts alkylation is a carbocation: R-X + AlX3 R+ R-OH + H+ R+ | | — C = C — + H+ R+ Carbocations can rearrange!
NR with rings less reactive than bromobenzene -CHO, -COR -SO3H -COOH, -COOR -CN -NR3+ -NO2
Friedel-Crafts limitations: • Polyalkylation • Possible rearrangement • R-X cannot be Ar-X • NR when the benzene ring is less reactive than bromobenzene • NR with -NH2, -NHR, -NR2 groups • In syntheses it is often best to do Friedel-Crafts alkylation in the first step!
Alkylbenzenes, reactions: • Reduction • Oxidation • EAS • a) nitration • b) sulfonation • c) halogenation • d) Friedel-Crafts alkylation • Side chain • free radical halogenation
Alkylbenezenes, reduction: CH3CH3 H2, Ni H2, Ni 300oC, 100 atm.
Alkylbenezenes, oxidation: CH3CH3 KMnO4 KMnO4 heat
Oxidation of alkylbenzenes. 1) Syn 2) identification C8H10:
Alkylbenzenes, EAS -R is electron releasing. Activates to EAS and directs ortho/para
Alkylbenzenes, free radical halogenation in side chain: benzyl free radical
Alkenylbenzenes, syntheses: • Modification of side chain: • a) dehydrohalogenation of alkyl halide • b) dehydration of alcohol • c) dehalogenation of vicinal dihalide • d) reduction of alkyne • (2. Friedel-Crafts alkylation)
Alkenylbenzenes, synthesis Friedel-Crafts alkylation not normally used for alkenylbenzenes. an exception:
Alkenylbenzenes, reactions: • Reduction • Oxidation • EAS • Side chain • a) add’n of H2 h) oxymercuration • b) add’n of X2 i) hydroboration • c) add’n of HX j) addition of free rad. • d) add’n of H2SO4 k) add’n of carbenes • e) add’n of H2O l) epoxidation • f) add’n of X2 & H2O m) hydroxylation • g) allylic halogenation n) ozonolysis • o) vigorous oxidation
Alkynylbenzenes, syntheses: Dehydrohalogenation of vicinal dihalides
Alkynylbenzenes, reactions: • Reduction • Oxidation • EAS • Side chain • a) reduction e) as acids • b) add’n of X2 f) with Ag+ • c) add’n of HX g) oxidation • d) add’n of H2O, H+
Alkynylbenzenes, reactions: reduction anti- syn-