1 / 8

Tensors

Tensors. Transformation Rule. A Cartesian vector can be defined by its transformation rule. Another transformation matrix T transforms similarly. x 3. x 2. x 1. For a Cartesian coordinate system a tensor is defined by its transformation rule.

lavey
Download Presentation

Tensors

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Tensors

  2. Transformation Rule • A Cartesian vector can be defined by its transformation rule. • Another transformation matrix T transforms similarly. x3 x2 x1

  3. For a Cartesian coordinate system a tensor is defined by its transformation rule. The order or rank of a tensor determines the number of separate transformations. Rank 0: scalar Rank 1: vector Rank 2 and up: Tensor The Kronecker delta is the unit rank-2 tensor. Order and Rank Scalars are independent of coordinate system.

  4. A rank 2 tensor can be represented as a matrix. Two vectors can be combined into a matrix. Vector direct product Old name dyad Indices transform as separate vectors Direct Product

  5. Tensors form a linear vector space. Tensors T, U Scalarsf, g Tensor algebra includes addition and scalar multiplication. Operations by component Usual rules of algebra Tensor Algebra

  6. The summation rule applies to tensors of different ranks. Dot product Sum of ranks reduce by 2 A tensor can be contracted by summing over a pair of indices. Reduces rank by 2 Rank 2 tensor contracts to the trace Contraction

  7. The transpose of a rank-2 tensor reverses the indices. Transposed products and products transposed A symmetric tensor is its own transpose. Antisymmetric is negative transpose All tensors are the sums of symmetric and antisymmetric parts. Symmetric Tensor

  8. Eigenvalues • A tensor expression equivalent to scalar multiplication is an eigenvalue equation. • Equivalent to determinant problem • The scalars are eigenvalues. • Corresponding eigenvectors • Left and right eigenvectors next

More Related