290 likes | 415 Views
Testing of A/D Converters. István Kollár Budapest University of Technology and Economics Dept. of Measurement and Information Systems Budapest, Hungary. Outline. Dynamic measurements: what is the input ? Standards Standardization projects, advantages and problems Main test methods
E N D
Testing of A/D Converters István Kollár Budapest University of Technology and Economics Dept. of Measurement and Information Systems Budapest, Hungary
Outline • Dynamic measurements: what is the input? • Standards • Standardization projects, advantages and problems • Main test methods • Sine wave fit: 3-parameter vs. 4-parameter • 4-parameter fit • Starting values • Algorithm • Programs • LabView • MATLAB • Summary
Input signals • Paradox: determine signal from erroneous data… • Solution: parametric model: • sine wave • exponential • ramp
Standardization Projects • IEEE 1057-1994 (standard for digitizing waveform recorders) • IEEE 1241-2000 (standard for terminology and test methods for analog-to-digital converters) IEC • DYNAD – dynamic characterization and testing of analogue to digital converters • EUPAS – European project for ADC-based devices standardization (in IMEKO TC4)
Location of Code Transitions Direct measurement: feedback loop Histogram – of what? Ramp vs. sine wave Nonlinearity
DFT/FFT Test Test Sine wave Coherent sampling Total harmonic distortion Spurious-free dynamic range Intermodulation distortion
Sine Wave Fitting IEEE 1241-2000 (standard for terminology and test methods for analog-to-digital converters) • Sine wave fitting Problems: detailed description, but • Complex algorithms using computer • One-step and/or iterative solutions • Non-defined or partly defined details • Not always repeatable results
Causes of Ambiguity • Starting values • Iteration details • Stop criteria • Number representation • Numerical algorithms (roundoff) Written standard + standard program(s) vs. detailed standard
3-parameter vs. 4-parameter Fit • 3-parameter: • Frequency ratio must be exactly known • Linear in the parameters (one-step solution) • 4-parameter: • More robust • Works also when the frequency ratio is exactly known • Non-linear in the parameters (iterative solution)
3-parameter Fit Linear in A, B, C A, B, C: LS solution of where is known.
4-p Fit: Starting Values Nonlinear in • Choice of is optional in the standard • Maximum of DFT (/2) • Count zero crossings (min. 5 periods) • Interpolated FFT
Algorithm I. Minimize vs. , A, B, C
Algorithm II. Algorithm: recursively find LS solution for xi of
Algorithm III. Newton-Raphson method
Algorithm IV. Newton-Gauss method Advantage:
Algorithm V. Difficulty: • Nothing guarantees decrease of cost function when applying step (second-order approximation) • Stop criterion? Good news: • In practice cf almost always decreases, especially if at least 5 periods were measured
Stop Criteria Stop if error is small enough (?): • Largest possible step is already small • Step below noise level • Step below noticeable error • Step below roundoff error Display: significant bits only
Candidate Programs • MATLAB • LabView • LabWindows • Agilent VEE • GeniDAQ • MATRIXx • Scilab • Mathematica
Sources of Program Information MATLAB, URL: http://www.mathworks.com/ LabView, URL: http://www.ni.com/labview/ LabWindows, URL: http://www.ni.com/cvi/ VEE, URL: http://www.get.agilent.com/gpinstruments/products/vee/support/ GeniDAQ, URL: http://www.advantech.com/products/GeniDAQ%20for%20Windows%20CE.asp MATRIXx, URL: http://www.windriver.com/products/html/matrixx.html Scilab, URL: http://www-rocq.inria.fr/scilab/scilab.html Mathematica, URL: http://www.wolfram.com/
Labview Programs Aim: support IEEE-STD-1057 • Original LabView source • New: stand-alone programs for PC and Macintosh
General Requirements for a Program • Theoretical • Accurate and fast realization • Careful documentation of the standard algorithms • Practical • Known environment • User-friendly and flexible interface • Availability (via internet) • Interactivity LabView is good, but Matlab is also required
Why MATLAB? • Available for several platforms in many labs and universities • IEEE double-precision numbers (64 bit) • Matrix, vector processing oriented (including DFT), implemented in C • Easy to examine and extend the code • User-interface support • Negligible cross-platform compatibility problems
The Framework • Standard mode • Curve fitting, DFT and other standardized methods, support automatic processing • Graphical mode • For visual evaluations • Compatible mode • Compatible with the LabView program • Advanced, development mode • Test-bed for new ideas
Interfaces • User interface • Graphical user interface • Self-documentation to support repeatability • ASCII file format to modify the settings easily • I/O interface • Several input file format supporting (ASCII, wave, custom) • Different output files (ASCII, mat, custom)
The Program Page http://www.mit.bme.hu/services/ieee/ADC-test/
Data Files (Common for Programs) Page: http://www.mit.bme.hu/services/ieee/ADC-test/data/
Summary • The framework • Standard, precise calculations • Flexible interfaces for different purposes • Future work • Version 3.1 is on the internet: http://www.mit.bme.hu/services/ieee/ADC-test/ • Continuous development • Interactive environment • Ideas and comments are appreciated