260 likes | 445 Views
Fe-pnictide high T c Superconductors. Satoshi Furukawa. Contents. ・ History of Superconductivity ・ Compare Fe- pnictide system to High- T c cuprate ・ Fe-pnictide Superconductor (La1111 series) career doping
E N D
Fe-pnictide high Tc Superconductors Satoshi Furukawa
Contents ・ History of Superconductivity ・ Compare Fe-pnictide system to High-Tc cuprate ・ Fe-pnictide Superconductor (La1111 series) career doping effect of pressure effect of elemental substitution hydrogen doping crystal structure ・ Summery and future work
History of Superconductivity 1900 1920 1940 1960 1980 2000 2020 Year 200 metal heavy fermion system Discovery of superconducting phenomenon high-Tc cuprate 163 Hg-Ba-Ca-Cu-O 1911 iron-based system under high pressure ( ) 150 Hg-Ba-Ca-Cu-O Tl-Ba-Ca-Cu-O Bi-Sr-Ca-Cu-O Heavy fermion superconductor 100 Transition temperature (K) 1986 1979 Y-Ba-Cu-O 77 SmO F FeAs 50 0.9 0.11 MgB2 High-Tc cuprate superconductor La-Ba-Cu-O LaO F FeAs PuCoGa5 Nb Ge 0.11 0.89 Nb Pb CeCu2Si2 NbN LaOFeP Hg NbC 0 2006 Iron-based high-Tc superconductor
Fe- pnictide Superconducting family “1111 system” “122 system” “111 system” “11 system” LaFeAsO1-y BaFe2As2 LiFeAs FeSe FeSelayer FeAslayer FeAslayer FeAslayer Tc max= 55 K Tc max= 38 K Tc max= 18 K Tc max= 8 K M. Rotter et al.(2008) X.C.Wang et al.(2008) F.C.Hsu et al.(2008)
High-Tccuprate La Cu O Sr2+ La2-xSrxCuO4 charge reservoir lay Cu+2 (3d9) Hole dope (La3+ → Sr2+)
Fe- pnictide Superconductor LaFeAsO1-xFx Fe+3 charge reservoir lay (3d6) e- AFM F Electron dope (O2- → F-)
Comparison -Phase diagram and doping mechanism- La Cu O Sr2+ Fe-pnictidesystem High-Tc cuprate Temperature AFM e- ・ Layered structure (charge reservoir layer & conduction layer) F ・Superconductivity appears by doping carriers. ・Superconducting transition related to a magnetic instability.
What is the originof superconductivity of Fe pnictide ? What is the cause of the Tc enhancement ? ① career doping ② crystal structure
Effect of pressure LaFeAsO0.89F0.11 43K pressure 28K La ▲ H. Takahashi et al., Nature 453 (2008) 376 Tcincreases from 28Kto 43K by pressure
Effect of elemental substitution 55K elemental substitution RE REFeAsO1-y La 28K rare earth element ▲ K. Miyazawa et al., J. Phys. Soc. Jpn, 78 (2009) 034712 smaller ion radius
Effect of elemental substitution La 55K Ce Pr Nd Sm Gd Tb Dy Y elemental substitution RE REFeAsO1-y La 28K rare earth element ▲ K. Miyazawa et al., J. Phys. Soc. Jpn, 78 (2009) 034712 Tcincreases from 28Kto 55K by elemental substitution 原子半径 smaller ion radius
Hydrogen doping –LaFeAsO1-yHx Pr(H) Ce(H) ● La1111:27K →La1111(H): 38.5K Ce1111:40K → Ce1111(H): 47.8K Pr1111:48K → Pr1111(H): 51.5K La(H) ● Nd Pr ● Ce La
Crystal structure –Pnictgen height- As Pnictgen height Fe Tc depends on pnictgen height
Crystal structure -α- regular tetrahedron As Fe αis As-Fe-As angle α regular tetrahedron Tc increases Tcis dependent on α
What is the originof superconductivity of Fe pnictide ? ① antiferromagneticspin fluctuations ② orbital degeneracy (Fe 3d) ③ fermi surface (Hole andelectron )topology
Summary and future work What is the cause of the Tc enhancement ? ・ career doping ・ crystal structure(pnictgen height and α) What is the originof superconductivity of Fe pnictide ? ・ the antiferromagnetic spin fluctuations ・ orbital degeneracy ・ fermi surface topology My future work is to find the cause what does determines Tc in La1111 system!! LaY1111(Tc=34K), La1111H (Tc=32K )
As Fe
Cu O Cu O CuO2 plane La3+2-xSr2+xCuO4 La2CuO4 Cu2+x Cu+2 (3d9) Cu Cu O O t U Antiferromagnetism(AFM) t≪U ⇒ Mott insulator Superconductivity(SC)
Recovery curve of nuclear magnetization Excitation Thermal equilibrium state M = M(t) Relaxation M = M(∞) M = 0 ~ Appendix ~ Iz =±3/2 After t… Iz =±1/2 M M(t) = M(∞)[1- exp(-3t/T1)] t time
Fe-, As-面間距離の変化 ~ Appendix ~ FeAs4 四面体が正四面体構造に 近づくとき、Tcは最も上昇する !! NdFeAsO0.6 LaFeAsO0.6 As LaFeAsO Fe Fe Fe FeAs4-tetrahedron Fe Neutron diffraction ~ C. H. Lee et al. JPSJ,77(2008)
NQR frequency (75νQ) Vzz: electric field gradient (EFG) at As nuclear site Vzz(EFG) is dominated by two contributions ① Charge distributionaround As atoms (Fe, La,,,,) • Charge distribution • at As(4p)orbitals As • Hybridization between • Fe(3d) and As(4p) orbitals EFG EFG As Fe Fe Fe Fe • Tc is very sensitive to local configuration of Fe & As Fe Fe Fe NdFeAsO1-y LaFeAsO1-y Close to regular tetrahedron Fe C. H. Lee et al., JPSJ (2008)