560 likes | 1k Views
Learning objectives. At the end of the presentation, participants should:Understand how the laboratory contributes to epidemiological surveillanceUnderstand the principles of laboratory-based surveillance. Laboratories and disease surveillance. Before the outbreakEarly warning signalsOutbreak detectionDuring the outbreakOutbreak response and management In between outbreaksTrend monitoringIntervention evaluation Monitoring progress towards a control objective.
E N D
2. Learning objectives At the end of the presentation, participants should:
Understand how the laboratory contributes to epidemiological surveillance
Understand the principles of laboratory-based surveillance
3. Laboratories and disease surveillance Before the outbreak
Early warning signals
Outbreak detection
During the outbreak
Outbreak response and management
In between outbreaks
Trend monitoring
Intervention evaluation
Monitoring progress towards a control objective
4. Expected results Laboratory: Confirmation of clinical diagnostic:
Identification of the bug
Serology detection
Identification of the strain/isolate/subtype
Identification of new pathogen
Characterization of pathogen sensitivity to antimicrobials
Identification of seroconvertants/carriers in populations
Collection of data/information from patients with various / different geographic origins
Collection of data/information from environmental or animal origin
5. Expected results Surveillance: Early warning
Outbreak detection
Post-outbreak surveillance
Environment and reservoir analyses
Surveillance of eradication-elimination of a bug
Surveillance of vaccination campaign
Surveillance of notifiable diseases
Surveillance of national drug treatment efficacy
6. I - Early warning signals Detection of pathogens that have potential to spread
Sentinel events requiring early control measures
Isolation of a single epidemic prone isolate (e.g. non-typhoidal salmonella isolated from a neonate in a hospital neonatal intensive care unit)
Emergence of resistant strains in the hospital or the community (e.g. multi-drug resistant tuberculosis)
7. Outbreak detection Outbreak detection by the laboratory
Outbreak detection with assistance from the laboratory
8. Outbreak detection by the lab Identification of a cluster of:
Infections with an unusual pathogen
Specific subtype of a pathogen
Outbreak of antibiotic-resistant strains
Subtypes of a pathogen (e.g. Shigella dysenteriae type I)
Reference centres may capture outbreaks disseminated
over a large area, or correlate events.
9. II - Outbreak confirmation Epidemiologist captures an increased incidence
Laboratory:
Confirms the diagnosis
Allows for a more specific case definition
Detects a new pathogen
Provides additional details on the pathogen (e.g., phage type)
Examples : detection H5N1, detection H1N1
Effective participation of the laboratory in surveillance
requires good communication between the
epidemiologists and the laboratories
10. Laboratory role during outbreaks Laboratory confirmation of early cases
On a subset of cases
Identification of new pathogens
Typing of the pathogen
Link clusters when the epidemiological data is not sufficient
Antimicrobial susceptibility testing to guide treatment
Post-outbreak surveillance
Environmental investigations
Detection of carriers
11. Laboratory role during outbreaks For new and emerging pathogens:
Identify the pathogen
Develop laboratory tests
Patient treatment/management
12. III - Monitoring endemic disease trends Confirm diagnosis
Case definitions that include laboratory criteria:
Monitor resistance patterns
Monitor subtypes of a pathogen
Detection Flu viruses subtypes, such as H5N1, H1N1
13. Monitoring endemic disease trends Examples:
Circulating strains of bacterial meningitis
Impact on treatment protocols
Impact on immunization policies
Antibiotic resistance
Methicilin resistant staphylococcus aureus
Vancomycin resistant enterococcus
Tuberculosis
Monitoring of Flu viruses circulation, vaccination policies
14. Invasive meningococcal infection serogroups by year, France, 1985-2000
15. Cases of malaria by species, Region A 1992-1996
16. IV - Eradication/elimination monitoring The elimination phase requires more specific tests as
positive predictive value decreases
Laboratory confirmed diagnosis
Polio surveillance
Measles
Typing helps identifying the origin
17. Cases of polio where wild poliovirus was isolated in children, District X 1980-1996
18. Predicting future AIDS trends for health service planning
19.
20. V - Monitoring seroconversion/susceptibility Systematic control of immune status for specific diseases
Tuberculin reaction
Toxoplasmosis
21. Establishing laboratory support for public health surveillance Identify diseases of public health importance
List diseases that require laboratory confirmation
Determine tests to be performed
Map laboratory facilities and human resources,
including reference laboratories
Establish laboratory networking
Identify a focal person to coordinate laboratory activities
Determine information flow
22. Define roles and responsibilities, identify referral system
Ensure supplies, logistics, guidelines and forms
Organize communication between lab and epi
Prompt, regular reporting of results and feedback
Plan quality assurance, biosafety and waste management
Supervise and monitor
Develop epidemic preparedness and response plans Establishing laboratory support for public health surveillance
23. How to identify a new subtype? Look for genetic material : broad range of genetic probes and methods
Direct isolation :
culture on selective media to obtain clonal populations
Characterize new serotypes
Characterize new chemical or biochemical activities
Characterize new toxins
24. Genoserotyping or PCR Group
25. Pulsed-field gel electrophoresis (PFGE) Photo WHOPhoto WHO
26. Pulsed-field gel electrophoresis (PFGE) Photo WHO
Photo WHO
27. Pulsed-Field Gel Electrophoresis
28. Universal PFGE standards
29. How to identify a new resistance to antibiotics Look for genetic material : broad range of genetic probes and methods for identification of resistance genes.
Direct isolation :
Culture on selective media to obtain clonal populations
Grow isolates on different antibiotics, and determine dose-response curves
30. Kirby-Bauer disc testing Antibiotic-impregnated discs placed on an agar plate at the
interface between test organism and susceptible control organism
Resulting zones of inhibition compared, use of controls
Susceptibility is inferred (standard tables) Photos taken from Manual for the laboratory Identification and Antimicrobial Susceptibility Testing of Bacterial Pathogens of Public Health Importance in the Developing World WHO/CDS/CSR/RMD/2003.6 http://www.who.int/csr/resources/publications/drugresist/WHO_CDS_CSR_RMD_2003_6/en/Photos taken from Manual for the laboratory Identification and Antimicrobial Susceptibility Testing of Bacterial Pathogens of Public Health Importance in the Developing World WHO/CDS/CSR/RMD/2003.6 http://www.who.int/csr/resources/publications/drugresist/WHO_CDS_CSR_RMD_2003_6/en/
31. E-test Plastic strips with a predefined gradient of
One antibiotic
One antifungal
Only one manufacturer
One strip per antibiotic
Wide range of antibiotics
Easy to use
Storage at -20°C
Short shelf life, expensive Photos taken from Manual for the laboratory Identification and Antimicrobial Susceptibility Testing of Bacterial Pathogens of Public Health Importance in the Developing World WHO/CDS/CSR/RMD/2003.6 http://www.who.int/csr/resources/publications/drugresist/WHO_CDS_CSR_RMD_2003_6/en/
Photos taken from Manual for the laboratory Identification and Antimicrobial Susceptibility Testing of Bacterial Pathogens of Public Health Importance in the Developing World WHO/CDS/CSR/RMD/2003.6 http://www.who.int/csr/resources/publications/drugresist/WHO_CDS_CSR_RMD_2003_6/en/
32. Reading E-tests Photos taken from Manual for the laboratory Identification and Antimicrobial Susceptibility Testing of Bacterial Pathogens of Public Health Importance in the Developing World WHO/CDS/CSR/RMD/2003.6 http://www.who.int/csr/resources/publications/drugresist/WHO_CDS_CSR_RMD_2003_6/en/
Photos taken from Manual for the laboratory Identification and Antimicrobial Susceptibility Testing of Bacterial Pathogens of Public Health Importance in the Developing World WHO/CDS/CSR/RMD/2003.6 http://www.who.int/csr/resources/publications/drugresist/WHO_CDS_CSR_RMD_2003_6/en/
33. How to identify a new pathogen ? Good question !!!!!
What if totally unknown, no clue from clinicians, or classical lab techniques ?
Look for genetic material : broad range of genetic probes and methods
Direct examination : light microscopy, electronic microscopy
Direct isolation :
culture on a whole spectrum of bacteriology media and conditions
Culture on a whole spectrum of cell lines permissive for most known viruses
34. Les puces à ADN ont suscité beaucoup d’espoirs lors de leur apparition.
Le principe est simplement basé sur une amplification d’acides nucléiques suivie d’une hybridation. Elle ne comporte rien de nouveau, si ce n’est une miniaturisation du système, ce qui permet d’analyser non pas une séquence, mais des milliers. Une sonde nucléotidique sur laquelle peut venir s’hybrider la cible, est fixée sur un support. Le signal est ensuite détecté puis analysé. Les puces à ADN ont suscité beaucoup d’espoirs lors de leur apparition.
Le principe est simplement basé sur une amplification d’acides nucléiques suivie d’une hybridation. Elle ne comporte rien de nouveau, si ce n’est une miniaturisation du système, ce qui permet d’analyser non pas une séquence, mais des milliers. Une sonde nucléotidique sur laquelle peut venir s’hybrider la cible, est fixée sur un support. Le signal est ensuite détecté puis analysé.
35. DNA chips characteristics
36. Pour une séquence de référence, des amorces de 25 pb sont synthétisés et couvrent la totalité de la séquence.
Le principe des puces à ADN de reséquençage est assez simple du moment qu’une séquence de référence dont on veut reséquencer la totalité ou seulement une partie. A partir de cette séquence, qui peut être un gène pour l’identification du pathogène ou celui d’un gène de référence, des sondes de 25 mers vont être désignées. La première sonde démarre en position 1 de la séquence jusqu’à la position 25. Les sondes suivantes sont décalées d’une base à chaque fois, donc la deuxième sonde correspond à la séquence de la base 2 à la base 26 et ainsi de suite jusqu’à la fin de la séquence.
Pour chaque position, il existe 4 oligos sens et 4 oligos antisens de 25 pb. La position centrale de ces oligo est variable : soit A; soit T, soit G, soit C
En tout pour chaque position, il existe 8 oligonucléotides de 25 pb.
La cible c’est-à dire la séquence que l’on souhaite hybrider sur la puce, va s’hybrider avec l’oligo pour lequel elle a le plus d’affinité. La fluorescence émise est directement proportionnelle à la quantité de cibles marquées.
Ona donc une image de fluorescence qui permet ensuite de reséquencér la séquence hybridée sur la puce.
Ex : en poisition 23, s’il y a un A sur la séquence de référence et un T sur la séquence cible, celle ci va s’hybrider préférentiellement avec l’oligo porteur d’un T en position 23
Pour une séquence de référence, des amorces de 25 pb sont synthétisés et couvrent la totalité de la séquence.
Le principe des puces à ADN de reséquençage est assez simple du moment qu’une séquence de référence dont on veut reséquencer la totalité ou seulement une partie. A partir de cette séquence, qui peut être un gène pour l’identification du pathogène ou celui d’un gène de référence, des sondes de 25 mers vont être désignées. La première sonde démarre en position 1 de la séquence jusqu’à la position 25. Les sondes suivantes sont décalées d’une base à chaque fois, donc la deuxième sonde correspond à la séquence de la base 2 à la base 26 et ainsi de suite jusqu’à la fin de la séquence.
Pour chaque position, il existe 4 oligos sens et 4 oligos antisens de 25 pb. La position centrale de ces oligo est variable : soit A; soit T, soit G, soit C
En tout pour chaque position, il existe 8 oligonucléotides de 25 pb.
La cible c’est-à dire la séquence que l’on souhaite hybrider sur la puce, va s’hybrider avec l’oligo pour lequel elle a le plus d’affinité. La fluorescence émise est directement proportionnelle à la quantité de cibles marquées.
Ona donc une image de fluorescence qui permet ensuite de reséquencér la séquence hybridée sur la puce.
Ex : en poisition 23, s’il y a un A sur la séquence de référence et un T sur la séquence cible, celle ci va s’hybrider préférentiellement avec l’oligo porteur d’un T en position 23
37. L’utilisation de puces à ADN nécessite une quantité suffisante d’ADN.
L’aDN double brin est d’abord dénaturé. Puis des amorces aléatoires vont venir s’hybrider sur l’ADN cible simple brin. Celles-ci serviront d’amorces de polymérisation pour une polymérase particulière issue d’un bactériophage, la phi29. Elle possède une activité de polymérisation très rapide, une grande fidélité et une activité de déplacement de brin. Elle ne sera pas décrochée quand elle rencontrera de l’ADN double brin devant elle. Sa fonction hélicase va lui permettre de déplacer et d’ouvrir l’ADN double brin et de continuer sa polymérisation. Sur ce nouveau brin, ainsi synthétisé, de nouvelles amorces vont venir se fixer.
On aboutit ainsi à des structures de type hyperbranchées.L’utilisation de puces à ADN nécessite une quantité suffisante d’ADN.
L’aDN double brin est d’abord dénaturé. Puis des amorces aléatoires vont venir s’hybrider sur l’ADN cible simple brin. Celles-ci serviront d’amorces de polymérisation pour une polymérase particulière issue d’un bactériophage, la phi29. Elle possède une activité de polymérisation très rapide, une grande fidélité et une activité de déplacement de brin. Elle ne sera pas décrochée quand elle rencontrera de l’ADN double brin devant elle. Sa fonction hélicase va lui permettre de déplacer et d’ouvrir l’ADN double brin et de continuer sa polymérisation. Sur ce nouveau brin, ainsi synthétisé, de nouvelles amorces vont venir se fixer.
On aboutit ainsi à des structures de type hyperbranchées.
38. Cette diapositive résume la méthodologie utilisée dans cette étude.Cette diapositive résume la méthodologie utilisée dans cette étude.
42. Peripheral level objectives
Diagnosis and early warning signals
Routine lab surveillance with intensification before
epidemic season
Environmental monitoring
Epidemic prone disease monitoring
Proper collection, transport and storage of samples
Reporting of results Establishing laboratory support for public health surveillance
43. Intermediate level objectives
Diagnosis and early warning signal
Epidemic preparedness, response and capacity building
In addition to activities at peripheral level, strengthen
surveillance through:
Supplies and logistics support
Networking of laboratories, feedback and feed forward
Monitoring, supervision
Outbreak investigation, epi-lab coordination Establishing laboratory support for public health surveillance
44. Referral level objectives
Confirmation and capacity building
Key activities
Referral investigations
Outbreak investigation
Development of guidelines
Quality assurance program, bio-safety and waste management
Training, monitoring, supervision and feedback Establishing laboratory support for public health surveillance
45. Surveillance: Lab functions Confirmation of etiology to resolve syndromic presentation
Data intelligence for:
Antimicrobial resistance monitoring
Emergence of unusual isolates
Detection of new pathogens
Sero-surveillance
47. Food Incident to Human cases Weekly comparison
Microbiological characteristics (PCR Group and combined PFGE AscI/ApaI profiles) of each strain of food incident take as reference
Search of all human strains with same (One band difference allowed) microbiological characteristics on three months before
Report to the member of Listeria Cell
Example of link between Human-Food Incident for smoked fish in 2009
48. Biochemical identification Purification on Columbia
Determination of PIPLC, Gram, Catalase, Mobility
Determination of biochemical reactions
Arylamidase
Esculin hydrolysis
Alpha mannosidase
D-arabitol acidification
D-xylose acidification
Rhamnose acidification
Alpha-Méthyl-D-glucoside acidification
Ribose acidification
Glucose-I-phosphate acidification
D-Tagatose acidification
Mannitol
Haemolysis on Horse Blood
Camp Test
50. Flow chart of analyses
51. Flow chart of analyses
52. Outbreak detection within the laboratory
Tracing spread through typing and characterization
Detection of carriers and natural foci of infection
Determine the end of an outbreak
Determine elimination or eradication of disease Surveillance: Lab functions
53. Surveillance: Lab & epi functions Outbreak detection and investigation
Develop case definition; determine case management
Environmental monitoring
Understand the natural history of disease
Evaluate interventions
Monitor progress towards control
Develop immunization strategies
Prevalence studies
54. Public health and clinical labs Public health laboratories
Belong to the public sector
Are involved in public health
Participate in surveillance
Clinical laboratories
May be public or private
Involved in management of patients
May participate in public health surveillance (e.g. laboratory reporting)