910 likes | 1.69k Views
HİDROLOJİ. Ercan Kahya. Hidroloji , Mehmetcik Bayazıt, xxx Yayınevi, 200x, İstanbul Hidroloji Ders Notları , Kasım Yenigün & Veysel Gümüş, Harran Üniversitesi, Mühendislik Fakültesi, İnşaat Müh. Böl. Hidroloji Ders Notları , KTÜ, MF, İnşaat Müh. Böl. BÖLÜM 1 GİRİŞ.
E N D
HİDROLOJİ ErcanKahya Hidroloji, Mehmetcik Bayazıt, xxx Yayınevi, 200x, İstanbul Hidroloji Ders Notları, Kasım Yenigün & Veysel Gümüş, Harran Üniversitesi, Mühendislik Fakültesi, İnşaat Müh. Böl. Hidroloji Ders Notları, KTÜ, MF, İnşaat Müh. Böl.
BÖLÜM 1 GİRİŞ
1.1. Hidrolojinin Tanımı ► Suyun yer küresindeki dağılımını ve özelliklerini inceler. ► Hidrolojinin en yaygın olan tanımı: “Yer küresinde bulunan suların oluşumunu, dolaşımını (çevrimini), dağılımını, fiziksel ve kimyasal özelliklerini ve çevre ile olan karşılıklı ilişkilerini inceleyen temel ve uygulamalı bilim dalı”
1.2. Hidrolojinin Önemi • Su ile ilgili her türlü mühendislik çalışmaları “ su kaynaklarının geliştirilmesi " adı altında toplanmaktadır. Bu çalışmaların amaçları: • a. Suyun kullanılması için yapılan çalışmalar: Su getirme, sulama, su kuvveti tesisleri, akarsularda ulaşım vb.. • b. Su miktarının kontrolü çalışmaları: Taşkın zararlarının azaltılması ve önlenmesi, drenaj (kurutma) ve kanalizasyon tesisleri vb.. • c. Su kalitesinin kontrolü çalışmaları: Suyun kirlenmesinin azaltılması ve mümkünse önlenmesi için yapılan koruyucu tesisler ve arıtma yapıları vb.. Bütün bu çalışmalar için yapılacak tesislerin planlama, projelendirme, inşaat ve işletme aşamalarında hidroloji bilimi hayati bir öneme sahiptir.
1.3. Hidrolojik Çalışmaların Safhaları • Gözlem ve Ölçümlerin Yapılması • Verilerin İşlenmesi • İstatistik Analiz Tekniklerinin Verilere Uygulanması • Matematik Modellerin Kurulması 1.4. Hidrolojik Çevrim Tabiatta değişik durumlarda (katı, sıvı ve gaz) bulunan su, sürekli bir dolaşım halindedir. Suyun tabiatta dolaştığı yolların tümüne "hidrolojik çevrim" adı verilir.
Hidrolojik Çevrim ENERGY: Güneş & Yerçekimi
► Mühendislik Hidrolojisi Açısından Hidrolojik Çevrim: (Şekil 1.2) Atmosfer biriktirme sisteminden → yüzeysel biriktirme sistemine düşen yağışın bir kısmı sızma yoluyla → zemin nemi biriktirme sistemine, oradan da perkolasyon yoluyla → yeraltı biriktirme sistemine geçer. Her üç sistemin de buharlaşma ve terleme yoluyla atmosfer ile ilişkileri bulunduğu gibi yüzeysel biriktirme sistemi yüzeysel akış, zemin nemi biriktirme sistemi yüzey altı akışı ve yeraltı biriktirme sistemi de yeraltı akışı şeklinde sularının bir kısmını → akarsu biriktirme sistemine gönderir. Akarsu biriktirme sistemine düşen yağış eklenip buharlaşma kayıpları çıktıktan sonra geriye kalan su akarsulardan akış şeklinde → denizlere veya göllere ulaşmakta, oradan buharlaşma ile atmosfere geri döner.
Sistem, düzenli bir şekilde birbirleriyle ilişkili olan ve çevresinden belli bir sınırla ayrılan bileşenler takımı olarak tanımlanır.
Kütlenin Korunumu: Kütlenin korunumu ilkesi: “Hidrolojik çevrimin herhangi bir parçasında su miktarının korunduğunu gösteren süreklilik denklemine götürür (su dengesi, su bütçesi). ► Bu denklemde, X: göz önüne alınan hidrolojik sisteme birim zamanda giren su miktarı, Y: birim zamanda sistemden çıkan su miktarı, S: sistemde birikmiş su miktarıdır. ►Bu denklem herhangi sonlu bir Δt zaman aralığındaki değerler (X,Y) göz önüne alınarak da yazılabilir:
Yerküresinin Su Dengesi ► Doğa su miktarı bakımından dinamik denge halindedir. Su tükenmez bir doğal kaynak olup yer küresindeki toplam su miktarı zamanla değişmez. ► Yeryüzünde bir yılda düşen yağış, o yıl içinde buharlaşarak havaya geri dönen su miktarına eşittir. - Bu miktar ortalama olarak yılda 100 cm kadardır.
Herhangi bir anda suyun yerküresinin çeşitli kısımları arasında dağılımı: ►Türkiye : yağış halinde düşen ortalama 509⋅109 m3 suyun %38 i (186.5⋅109 m3) akarsularda akış haline geçer. Türkiye’nin kullanılabilir yer altı suyu potansiyelinin ise yılda 9.5⋅109 m3 olduğu tahmin edilmektedir.
Yerkürenin Isı Dengesi Güneş ısısı: sabit & ort. dakikada 2 kal/cm2. Örnek olarak, 40. enlemde bir günde kışın 326 kal/cm2 & yazın 1021 kal/cm2 düşer! ► Güneş enerjisi: %33 atm yansıtır + %22 hava ve su molekülleri tutar kalan %45 yeryüzüne ulaşır. Yerkürenin ort. Sıcaklığı: 15 C
SINIF UYGULAMASI Örnek Problem 1: Demir köprü baraj gölünde 1971 yılı haziran ayı başında 495.5 milyon m3 su bulunmaktadır. Bu ay boyunca gediz nehrinin baraj gölüne getirdiği ortalama debi 15.8 m3/s dir. Haziran ayında gölden 8.5 milyon m3 su buharlaşmıştır,göl üzerine yağış düşmemiştir. Enerji üretimi için bu ay baraj gölünden 50.5 milyon m3 su çekilmiştir. Haziran ayı sonunda gölde 476.4 milyon m3 su bulunduğu bilindiğine göre, baraj gölünden 1 ay boyunca ne kadar sızıntıolmuştur? Örnek problem 2: Yerküresinde karaların alanı 148.9x106 km2, denizlerin alanı 361.1x106km2 dir. Karalar üzerinde yıllık ortalama yağış yüksekliği 746 mm, buharlaşma yüksekliği 480 mm dir. Denizler üzerinde yıllık ortalama yağış yüksekliği 1066 mm dir. Buna göre akarsuların her yıl denizlere taşıdıkları ortalama su hacmini ve denizlerdeki yıllık buharlaşma yüksekliğini bulunuz.?
BÖLÜM 2 YAĞIŞ
YAĞIŞ ■ Atmosferden katı yada sıvı halde yeryüzüne düşen sulara yağış denilir. ■ Sıvı haldeki yağış yağmur şeklindedir, katı haldeki yağış ise kar, dolu, çiğ, kırağı şekillerinde olabilir. • Yağışın Meydana Gelmesi İçin Gerekli Şartlar: • Atmosferde yeterince su buharı bulunmalıdır. • Hava kütlesi soğumalıdır. Hava soğuyunca, su buharı taşıma kapasitesi de azalır. Belirli bir sıcaklıktan sonra da su buharı sıvı haline gelir. • Yoğunlaşma olmalıdır. Yoğunlaşma olayı, "yoğunlaşma çekirdeği" adı verilen çok küçük tozlar üzerinde gerçekleşir. • 4) Yeryüzüne düşebilecek irilikte (yaklaşık 1 mm) damlalar oluşmalıdır. Bu ya üzerinde su buharının yoğunlaşa bileceği buz kristallerinin varlığıyla ya da küçük damlacıkların çarpışarak birleşmesi sonunda olabilir.
Yağış Tipleri Nasıl Tanımlanır: 1. Konvektif yağış: Yeryüzüne yakın hava fazla ısınırsa yükselir. Bu özellikle etrafı dağlarla çevrili bölgelerde yaz aylarında görülür. Yağış yerel, kısa süreli ve şiddetlidir. İç Anadolu da yaz akşamlarında görülen sağanakların nedeni budur. 2. Orografik Yağış: Nemli bir hava kütlesi bir dağ dizisini aşmak için yükselirken soğur ve orografik yağışa yol açar. Ülkemizde denize paralel dağ sıralarının (Kuzey Anadolu dağları,Toroslar) denize bakan yamaçlarında denizlerden gelen nemli ve sıcak hava kütleleri bu şekilde yağış bırakır. Orografik yağış alan bölgelerde arazini kotu ile yağış yüksekliği arasında bir ilişki vardır.
3. Depresyonik (Siklonik) Yağışlar: Bir sıcak hava kütlesi ile bir soğuk hava kütlesinin düşey bir cephe boyunca karşılaşmaları halinde; sıcak hava yukarıya, soğuk havada aşağıya doğru hareket eder. Böylece sıcak havanın yukarıda soğuması ile oluşan depresyonik (siklonik, cephe) yağışlar, orta şiddette ve uzun süreli olup oldukça geniş alanlarda etkili olabilirler. Yurdumuzda meydana gelen yağışların çoğu bu şekildedir. Not: Soğuk cephe daha şiddetli ve etkilidir.
Yağışın Ölçülmesi Yatay bir yüzeye düşen ve düştüğü yerde kalarak biriktiği kabul edilen su sütununa "yağış yüksekliği" adı verilir ve genellikle mm cinsinden ifade edilir (1mm = 1 kg/m2). Yağmurun Ölçülmesi • Yazıcı Olmayan Ölçekler (Plüviyometre): • - Düşey kenarlı bir kap • En çok kullanılan plüviyometre tipi, 20 cm çaplı bir silindir şeklindedir. Okuma hassasiyetini artırmak için, bu silindirden daha küçük ikinci bir silindir iç kısma yerleştirilmiştir. • Plüviyometreler, yalnızca belirli bir zaman aralığındaki toplam yağış yüksekliğini verirler, yağış yüksekliğinin zamanla değişimini kaydedemezler.
b. Yazıcı Ölçekler (Plüviyograf): • Bunlar, yağış yüksekliğinin zamanla değişimini kaydederler. • Tartılı plüviyograflar: Yağmur, alt tarafına yay monte edilmiş bir kovada toplanır; yağmur yağdıkça kova ağırlaşarak aşağı doğru hareket edip dönen bir kâğıt şerit üzerindeki yazıcı ucu hareket ettirir ve böylece yağış yüksekliğinin zamanla değişimi kaydedilir. • Bu sistemle, oldukça hassas ve doğru ölçümler yapılabilir. • Türkiye'de en yaygın olarak kullanılan plüviyograf tipidir. • 2. Devrilen kovalı plüviyograflar: Giriş kabına yağan yağmur küçük bir kovada toplanır. Kova dolunca devrilir ve her devrilme ile yazıcı bir uç kâğıt şerit üzerinde hareket eder. Bir kovacık devrilince yerine bir diğeri geçerek dönel şerit üzerinde basamaklı çizgiler elde edilir. • - Hassasiyeti daha azdır. • 3. Şamandıralı plüviyograflar: Kaptaki su seviyesinin yükselmesi ile su yüzeyinde bulunan bir şamandıra (yüzgeç), yazıcı bir ucu hareket ettirerek kâğıt şerit üzerinde yazı yazmasını sağlar.
Çeşitli plüviyograf tipleri Ayrıca, radarlar yardımıyla da yağmur ölçümleri yapılmaktadır.
Karın Ölçülmesi • ■ Yağmur ölçekleri kullanılır. • Karın donmasını önlemek için ölçüm aletine kalsiyum klorür veya etilen glikol gibi antifriz maddeler konur. • Karın erimesiyle oluşacak akış miktarını hesaplamak için karın su eşdeğerinden yararlanılır. • Karın su eşdeğeri: Kar eridiğinde oluşacak su miktarının su yüksekliği cinsinden değeridir. • Karın yoğunluğu ile kar yüksekliğinin çarpımına eşittir. • Yeni yağmış karın yoğunluğu 0.1, eski (sıkışmış) karın yoğunluğu ise 0.3-0.6 arasındadır.
Ölçüm Hataları • Rüzgâr tesiri: Rüzgâr nedeniyle, yağışın bir kısmının ölçeğe girmesi engellenir. Bunu önlemek için, yağış ölçeği rüzgâr etkisinden uzak bir yere konur; ayrıca rüzgâr perdeleri de kullanılabilir. • b. Ölçeğin etrafındaki engeller: Yağış ölçeğinin etrafındaki ağaç, bina gibi yüksek engeller, doğru ölçüm yapılmasına mani olur. • - Tedbir olarak, ölçeklerin, engel yüksekliğinin en az iki katı uzağına yerleştirilmesi gerekir. • c. Ölçek kabında buharlaşma: Tedbir olarak, su yüzeyinde ince bir yağ tabakası teşkil edilir. • d. Civardan sıçrayan damlalar: Ölçek, yerden en az 1 m yükseğe yerleştirilmelidir.
Yağış Ölçekleri Ağı Yağışın yerel dağılımının öğrenilebilmesi için bir ölçüm ağının kurulması gerekir. ■ Özellikle dağlık bölgelerde yağış miktarı ve şiddeti hızla değiştiğinden, bu yerlerde oldukça sık bir ölçüm ağı kurulmalıdır. ■ Dünya Meteoroloji Teşkilatı, (WMO), optimum ölçek sıklığı olarak, - düz bölgelerde 600-900 km2’de, - dağlık bölgelerde ise 100-250 km2’de bir ve ayrıca en çok 500 m kot farkıyla ölçek yerleştirilmesini tavsiye etmektedir. ■ Türkiye'de ölçümler DMİ ve DSİ tarafından yapılmaktadır.
Yağış Verilerinin Analizi Tanımlar • Yağış süresi (t): Bir yağışın başlama anı ile sona erişi arasında geçen süredir. • b. Toplam yağış eğrisi: Yağış kayıtları düzenlenerek, toplam yağış (P) ordinatta, zaman (t) apsiste olmak üzere toplam yağışın zamanla değişimini veren grafiğe "toplam yağış eğrisi" denir. • Yağışın zaman içerisindeki • değişimini, artışını, azalmasını • durmasını gösteren diyagramdır.
c. Yağış şiddeti (i): Birim zamanda düşen yağış yüksekliğine "yağış şiddeti" denir. Birimi [mm/saat], [cm/saat]. • Hafif yağışlarda 1 mm/saat, i = dP / dt ≈ ΔP / Δt • şiddetli yağışlarda 10-20 mm/saat olabilir. d. Hiyetograf: Yağış şiddetinin zamanla değişimini gösteren grafiğe "hiyetograf" denir. Yağış şiddeti (i) ordinatta, zaman (t) apsiste gösterilir. e. Yağış frekansı: Belirli bir şiddetteki bir yağışın belli bir zaman süresi içinde (1 yıl, 10 yıl, 50 yıl vb.) oluşma sayısına "yağış frekansı" adı verilir.
Verilerin Homojen Hale Getirilmesi Bir yağış ölçeğinin yer veya konumunda, ölçme yönteminde veya çevre şartlarında yapılan değişiklikler sonucu, bir istasyonda ölçülen eski ve yeni yağış değerleri arasındaki homojenlik bozulmuş olabilir. Homojenliğin bozulup bozulmadığını belirlemek ve bozulmuşsa homojenliğini sağlamak için "çift toplama yağış yöntemi" kullanılır. - Yıllık yağış ort. kullanılarak kümülatif (eklenik) grafik çizilir ve eğimde kırıklık aranır... Bu verileri homojenleştirmek için, o yıldan önceki veriler, kırıklığın olduğu noktadan önceki doğrunun eğiminin (m1) kırıklıktan sonraki doğrunun eğimine (m2) oranı (m1/m2) ile çarpılır (Şekil 2.8). ■ Bu yöntem, yalnızca yağışlar için değil, her türlü hidrolojik veriler için de kullanılabilir.
Eksik Verilerin Tamamlanması • Bir istasyondaki kayıtların bir kısmı eksik ise, bu eksik verileri tamamlamak için yakında bulunan ölçeklerin kayıtlarından faydalanılır. • Bunun için aşağıdaki eşitliğinden yararlanılır: • Burada: yakında bulunan n istasyon sayısı, Px eksik yağış değeri, Ax yağış değeri eksik olan istasyonun yıllık ortalamasıdır.
Ortalama Yağış Yüksekliğinin Hesabı Bir bölgedeki çeşitli noktalarda yağış gözlemleri yapılmışsa, o bölgenin ortalama yağış yüksekliği çeşitli yöntemlerle hesaplanabilir. Burada en çok uygulanan üç yöntem açıklanacaktır. Bir bölgenin ortalama yağış yüksekliği şöyle tanımlanır: Burada: Pi her istasyonun yağış değeri, Ai istasyonun temsil ettiği alan, A toplam alandır.
Aritmetik Ortalama Yöntemi: • Bu yöntemde, bölge içindeki tüm istasyonların değerlerinin ortalaması alınarak bölgenin ortalama yağış yüksekliği bulunur. • Çok basit olan bu yöntem, dağlık bölgelerde ve şiddetli yağışlar sırasında uygulanamaz. Çünkü bu durumlarda yağış şiddeti çok kısa mesafelerde hızla değişebilir. • Yağış ölçeklerinin oldukça üniform olduğu 500 km2’den küçük bölgelerde bu yöntem uygulanabilir.
b. Thiessen Yöntemi: • - Bölgedeki yağış istasyonlarının dağılımı üniform değilse bu yöntem, uygulanır. • Bölge içinde olmayan yakındaki yağış istasyonlarının verileri de kullanılabilir. • Birbirine yakın istasyonlar doğru parçalarıyla birleştirilir; bu doğru parçalarından orta dikmeler çıkılarak her bir istasyona ait bir çokgen (Thiessen Çokgeni) teşkil edilir. • Her bir çokgenin sınırladığı • alanın o istasyonla temsil edildiği • varsayılarak ve 2.6 eşitliği • yardımıyla ortalama yağış • yüksekliği hesaplanır.
c. İzohiyet Yöntemi: • - Bu yöntem, özellikle dağlık bölgelerde iyi sonuçlar verir. • - Yağış yüksekliği aynı olan noktaları birleştiren izohiyetler (eş yağış yüksekliği eğrileri) çizilir. • İki ardışık izohiyet arasındaki alanda yağış yüksekliğinin, izohiyetlerin değerlerinin ortalamasına eşit • olduğu varsayılarak ortalama • yağış yüksekliği 2.6 eşitliğiyle • bulunur.
Yağış Yüksekliği-Alan-Süre (P-A-t) Analizi ♦ Bir yağış sırasında yağış yüksekliğinin yerel dağılımını belirlemek için eş yağış eğrileri çizilir. ♦ Yağış merkezinden uzaklaştıkça yağış yüksekliğinde bir azalma olur. ♦ Bu azalma oranı, yağış süresi ile ters yönde değişir. ♦ Yani, kısa süreli bir yağışın yerel değişimi, uzun süreliden daha fazladır.
Yağışın Yerel Dağılımı Horton Formülü (2.7) Burada; Po merkezdeki yağış yüksekliği, A yağış alanı, P alanı A olan bölgedeki yağış yüksekliği, k ve n her yağış süresi için belirlenen sabitlerdir.
Yağış Yüksekliği-Süre-Tekerrür (P-t-T) Analizi Bir havzadaki veya bölgedeki çeşitli tekerrür süreli (T), yağış yüksekliklerinin (P), yağış süresi (t) ile değişimini belirlemek için, yağış yüksekliği-yağış süresi-tekerrür süresi arasındaki ilişkiler belirlenir. Yağış yüksekliği-süre-tekerrür analizine benzer olarak, yağış yüksekliği yerine yağış şiddeti dikkate alınarak, yağış şiddeti-süre-tekerrür (i-t-T) analizleri yapılabilir
Muhtemel Maksimum Yağış ♦ Bir havzada belli bir yağış süresi için fiziksel olarak mümkün olabilecek en büyük ve aşılması ihtimali çok küçük olan yağışa "Muhtemel Maksimum Yağış" adı verilir. ♦ Bu yağış, özellikle, yıkılması halinde çok büyük can ve mal kaybına yol açabilecek barajların dolu savaklarının boyutlandırılmasında dikkate alınır. ♦ Muhtemel maksimum yağışın tahmin edilmesi çalışmalarında meteoroloji uzmanlarıyla işbirliği yapılmalıdır. - Muhtemel maksimum yağışın hesabında kullanılan yöntemler ikiye ayrılırlar: a. Fiziksel Yöntemle Muhtemel Maksimum Yağış Hesabı [Havzada mevcut veya diğer bir havzadan taşınan yağış değerleri, çeşitli tekniklerle büyütülerek, o havzada olabilecek en büyük yağış tahmin edilir (maksimizasyon)] b. İstatistik Yöntemle Muhtemel Maksimum Yağış Hesabı ♦ İkinci yöntemin uygulaması oldukça kolay olmasına karşılık, elde edilen sonuçlar fiziksel yöntem ile elde edilenlerden daha hatalı olmaktadır.
BÖLÜM 3 BUHARLAŞMA
3.1. Giriş ♦ Atmosferden yeryüzüne düşen yağışın önemli bir kısmı tutma, buharlaşma ve terleme yoluyla, akış haline geçmeden atmosfere geri döner. ♦ Bu kayıpların belirlenmesi özellikle kurak mevsimlerde hidrolojik bakımdan büyük önem taşır. ♦ Buharlaşma, suyun sıvı halden gaz haline geçmesi olayıdır. ♦ Su yüzeyindeki moleküller yeterli bir kinetik enerjiye sahip olduklarında, kendilerini tutmaya çalışan diğer moleküllerin çekim etkisinden kurtularak sudan havaya fırlarlar. ■ Su yüzeyi civarında sudan havaya ve havadan suya doğru sürekli bir molekül akımı vardır. Sudan havaya geçen moleküllerin fazla olması olayına "buharlaşma" adı verilir.
♦ Buharlaşma, su, ıslak toprak, kar, nehir, göl ve deniz yüzeylerinden olabilir. ♦ Bitkiler üzerine düşen yağışın burada kalması olayına "tutma", bitkiler üzerinden suyun havaya çıkmasına da "terleme" (transpirasyon) denir. Buharlaşma ve terleme olaylarının ikisine birden "evapotranspirasyon" denir. ♦ Buharlaşma, su mühendisliği açısından büyük bir öneme sahiptir. Özellikle baraj göllerinde (rezervuarlarda) biriken suyun önemli bir kısmı buharlaşma yoluyla atmosfere geri dönmekte ve bu sudan yararlanılamamaktadır. ♦ Örneğin, tüm barajlardan bir yılda buharlaşan su miktarı, Seyhan Nehri’nin aynı sürede getirdiği suya eşittir. ►Buharlaşma mekanizmasını bilmek ve buharlaşmayı azaltıcı önlemler almak, su potansiyelinden yararlanma açısından büyük bir önem taşımaktadır.
3.3. Buharlaşmayı Etkileyen Faktörler • Hava Sıcaklığı: Hava sıcaklığı arttıkça, su yüzeyindeki buhar basıncı (ew) ile hava basıncı (ea) arasındaki fark büyür ve buna bağlı olarak da buharlaşma miktarı da artar (Dalton Kanunu). • b. Rüzgâr: Rüzgârlı havalarda havanın hareketi artacağından, su yüzeyi yakınlarında suya doymuş olan hava buradan uzaklaşarak daha az rutubetli hava bu bölgeye gelir. Sonuç olarak, rüzgâr, hava sirkülasyonunu sağlayarak buharlaşma miktarının artmasına yol açar • (! rüzgârlı havalarda çamaşırların daha çabuk kuruması örneği). • c. Güneş enerjisi: 1 gram suyun buharlaşması için suyun sıcaklığına bağlı olarak 539-597 kalori gereklidir. Bu enerji direkt olarak güneşten sağlanır. • d. Suda erimiş tuzlar ve su yüzeyindeki kimyasal maddeler: Suda erimiş tuzlar ve su yüzeyindeki kimyasal maddeler buharlaşmayı azaltırlar. • e. Hava basıncı: Hava basıncının artması buharlaşmayı az da olsa azaltır.
3.4. Su Yüzeyinden Buharlaşma • 3.4.1. Buharlaşma Miktarının Hesabı: • Meteorolojik şartlara bağlı olarak su yuzeyinden gunde (1-10) mm arasında su buharlaşır. • Buharlaşma olayını etkileyen parametrelerin cok olması nedeniyle, buharlaşma miktarının önceden kesin olarak belirlenmesi imkansızdır. Ancak, ceşitli yontemlerle bu miktar tahmin edilebilir: • a. Su Dengesi Yontemi: Göz onune alınan diğer değişkenler (X, Y ve ΔS) biliniyorsa, buharlaşma miktarı tahmin edilir. • b. Enerji Dengesi Yontemi: Su kutlesine enerjinin korunumu ilkesi uygulanarak buharlaşma miktarş tahmin edilebilir. Ancak, bu yontemin uygulanması icin gerekli olan meteorolojik parametrelerin hesaplanması oldukca guctur ve bu nedenle yontem pek fazla kullanılmamaktadır.
c. Ampirik Formuller: Ampirik formuller, buharlaşma hesaplarında sıkca kullanılmaktadır. Bunların genel yapısı şoyledir: E: buharlaşma miktarı, ew ve ea: su yüzeyindeki buhar basıncı ve hava basıncı, w: rüzgâr hızı, A, b, n : her formül için ayrı ayrı belirlenen katsayılardır. ► Ampirik formüllerin en büyük dezavantajı, yalnızca belirli şartlar altında iyi sonuç vermeleridir.
Su dengesi metodunu bir su kütlesine (göl, hazne gibi) süreklilik denklemi uygularsak: