1 / 34

Introduction , P ast W ork and F uture Perspectives : A Concise Summary

Introduction , P ast W ork and F uture Perspectives : A Concise Summary. CERN, 18.02.2013 Arno E. Kompatscher CiS Forschungsinstitut für Mikrosensorik und Photovoltaik GmbH Erfurt, Germany. Contents. Personal Introduction Diploma Thesis General outline Crystallography

lel
Download Presentation

Introduction , P ast W ork and F uture Perspectives : A Concise Summary

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Introduction, PastWork andFuture Perspectives: A Concise Summary • CERN, 18.02.2013 • Arno E. Kompatscher • CiS Forschungsinstitut für Mikrosensorik und Photovoltaik GmbH • Erfurt, Germany

  2. Contents • Personal Introduction • Diploma Thesis • General outline • Crystallography • Martensite • Preparation • Analysis and results • TEM bright field • TEM selected area diffraction (SAD) • DSC • Conclusions

  3. Contents • Present Work and Future • 4’’ wafer layout • 6’’ wafer layout • Comparison • Quad vs. FE-I4 vs. FE-I3 • Ganged & long pixels (Quad, center) • With and without long pixels (edge) • Bias grid variations • Prospects

  4. PersonalIntroduction • Arno E. Kompatscher • Born June 4, 1984 in Hall in Tirol • Hometown: Feldkirch, Vorarlberg • Studiedphysicsat University of Vienna • Thesis: ElectronmicroscopyofNi-Mn-Gaalloys • Mag.rer.nat. (= M.Sc.) on August 28, 2012

  5. Personal IntroductionHome & Education

  6. Personal IntroductionCurrent Work • Since November 1, 2012: • Early Stage Researcher • CiS Forschungsinstitut für Mikrosensorik und Photovoltaik GmbH • Erfurt, Thuringia • Ph.D. via • Prof. Claus Gößling • Lehrstuhl Experimentelle Physik IV • TU Dortmund, North Rhine-Westphalia

  7. Diploma Thesis “Phase transformations in Ni-Mn-Ga shape memory alloys subjected to severe plastic deformation” Supervisor: Prof. Thomas Waitz Group: Physics of Nanostructured Materials (PNM) Faculty of Physics, University of Vienna physnano.univie.ac.at

  8. Diploma ThesisGeneral Outline • Material: • Ni54Mn25Ga21 • Tetragonal martensite (2M) in initialstate • Preparation: • High pressure torsion (HPT) • Annealing (heat treatment) • Analysis • Transmission electron microscopy (TEM) • Differential scanning calorimetry (DSC) • X-ray diffractometry(XRD)

  9. Diploma ThesisCrystallography Austenite (L21Heusler) Martensite (I4/mmm, bct)

  10. Diploma ThesisMartensite • Martensiticphasetransformation • Displacive, diffusionless, 1st order • Low temperaturemartensite • High temperatureaustenite

  11. Diploma ThesisMartensite Different variantsofmartensite Unmodulated (2M, initialstate), Modulated (7M and 5M)

  12. Diploma ThesisPreparation d = 0.4±0.1 Degreeofdeformation : 2.2 · 105 % and 6.5 · 105 % High pressuretorsion (HPT): 8 GPa, 50 and 100 turns

  13. Diploma ThesisAnalysis • Transmission electronmicroscopy (TEM) • Microstructure, grainsize, latticestructure, latticeparameters • Differential scanningcalorimentry (DSC) • Heattreatment, ID ofphasetransitionsandrespectiveenthalpies • X-Ray diffractometry (XRD) • Confirmationoflatticestructuresandparameters

  14. Diploma ThesisAnalysis Initial Material: w/o HPT, w/o heattreatment As deformed: after HPT, w/o heattreatment After HPT, heattreatmentto 420°C After HPT, heattreatmentto 500°C

  15. Diploma ThesisTEM brightfield Initial state As deformed Eachmartensiticvariant isinternallytwinned; grainsizeseveralhundredsofm Strong grainfragmentation due tosevereplasticdeformation (SPD)

  16. Diploma ThesisTEM brightfield HT 420°C HT 500°C Beginningsofgrainnucleation; smallpolygonizedgrainsstartto form due toheattreatment (arrows) Grainnucleationcompleted, clearlyidentifyablepolygonizedgrains; grainsize140±6 nm

  17. Diploma ThesisTEM SAD Initial state As deformed Disorderedtetragonal (fct), facecenteredcubic (fcc), nomartensite Tetragonal martensite

  18. Diploma ThesisTEM SAD HT 420°C HT 500°C Intermediadestructuredetected: disorderedbodycenteredcubic (bcc) 7M martensiteobservedtobepredominant

  19. Diploma ThesisDSC, initialstate AP = 208 °C MP = 190 °C

  20. Diploma ThesisDSC, progression • Change ofmartensiteandaustenitepeaktemperatures (AP, MP) due toheattreatment • Sample 1: shortannealing time (10 min at 500 °C, almostdirectly after HPT) • Sample 7: longannealing time (505 min attemperaturesfrom 500 to 675 °C)

  21. Diploma ThesisConclusions • HPT induces strong grainrefinement • Hundredsofm before HPT • 140±6 nm after HPT • HPT causesdisorderingandsuppressionofmartensitictransformation • Upon heattreatmentto 500 °C the adaptive 7M martensiticstructureforms

  22. Diploma ThesisAcknowledgement • Prof. Thomas Waitz, supervisor • Dr. Clemens Mangler, assistantsupervisor • PhysicsofNanostructured Materials (PNM) Group • FacultyofPhysics, University of Vienna • Materials Center Leoben (MCL) • Fonds zur Förderung der wissenschaftlichen Forschung (FWF)

  23. Present Workand Future

  24. Present Work & FutureMotivation Past: developmentofnewsensorsforinsertable B-layer (ATLAS Upgrade Phase I, happeningnow) Development ofnewdetectorsfor ATLAS Upgrade Phase II (2022)

  25. Present Work & Future4‘‘ Wafer • 2 x Quad • 3 x FE-I4 • Bias gridvariants • Long pixels (old) • Nolongpixels (new) • 8 x FE-I3 • Severalvariants • Special: w/o biasgrid • Test structures • Diodes • Temp. resistors • etc.

  26. Present Work & Future6‘‘ Wafer • 4 x Quad • 12 x FE-I4 • Bias gridvariants • Long pixels (old) • Nolongpixels (new) • 16 x FE-I3 • Severalvariants • Special: w/o biasgrid • Test structures • Diodes • Temp. resistors • etc.

  27. Present Work & FutureComparison

  28. Present Work & FutureComparison + – Problem: Higher riskoffracture Benefit: Larger areaofactivepixels

  29. Present Work & FutureGanged & longpixels

  30. Present Work & FutureGanged & longpixels

  31. Present Work & FutureComparison • w/ and w/o longpixels • Long pixels • Removed • Guard rings • Readjusted • Nowbelowstandardpixels • Benefits: • Slimmer design • Precision totheveryedge

  32. Present Work & FutureBias gridvariations • Problem: • High leakagecurrentsat HV • Possible Source: • Bias grid (dots) • Proposed Solution: • Varyingbiasgridlayout • Var. 1: biasdotsunchanged, grid per column • Var. 2: biasdotsunchanged, gridatpixelcenter • Var. 3: biasdotsandgridatpixelcenter • Control: nobiasgrid

  33. Present Work & FutureProspects Processing of 6‘‘ Wafers (CiS) Characterizationand Analysis (TU Dortmund) Test beam (DESY, Hamburg) Increasingradiationhardness

  34. ThankYouforyourattention

More Related