400 likes | 865 Views
MEAN, MEDIAN, MODE. FREQUENCY DISTRIBUTION TABLE. A table containing array data have been grouped by class or specific categories. How to make it?. 2. SEE This Data. 3. FIRST STEPS ARE MAKE A FREQUENCY DISTRIBUTION TABLE. 4. STEP 01 :. SET NUMBER OF CLASSES ( Jumlah Kelas JK ).
E N D
FREQUENCY DISTRIBUTION TABLE A table containing array data have been grouped by class or specific categories. How to make it? 2
STEP 01 : SET NUMBER OF CLASSES (Jumlah KelasJK) JK = 1 + 3,322 log n H.A. Sturges (1926) JK = number of classes n = the number of observations (data) 5
Form the data, number of classes are JK = 1 + 3,322 log 60 = 1 + 3,322 (1,778) = 1 + 5,907 = 6,907 ≈ 7 class 6
STEP 02 : Set class interval ( Interval KelasIK) (Xt – Xr) IK = JK Dimana : IK = class inteval Xt = highest data Xr = lower data Xt – Xr = Range 7
From the data obtained Xt = 85 and Xr = 23, then IK = ....? (Xt – Xr) IK = JK (85 – 23) IK = 7 = 8,8 ≈ 8 8
WHAT YOU NEED TO KNOW FROM THE FREQUENCY DISTRIBUTION TABLE 10
(Class Limit) • Lower Class Limit lowest possible values within a class interval. Example In the class interval : 20-29; 30-39; 40-49 the lower class limit are 20, 30, dan 40. • Upper Class Limit highest possible values within a class interval Example In the class interval 20-29; 30-39; 40-49 The highest class limit 29, 39, dan 49. 11
Class Boundaries • Lower Class Boundary The real lower class boundary LCB – 0,5 Ex : Class interval 20-29; 30-39; 40-49, the LCB 19,5; 29,5; dan 39,5. • Upper Class Boundary The real upper class boundary UCL+ 0,5 Ex : Class interval 20-29; 30-39; 40-49, the UCB 29,5; 39,5; dan 49,5. 12
Mid-point or class mark Mid-point ith = (LCL + UCL) : 2 Dimana : MP I = Mid point class ith (1,2,3,4,…..i) LCL = Lowe class limit UCL = Upper class limit 13
Cummulative Frequency • Cf : frequencies results from the merger of the class frequency with the class freqency before • Cf can be calculated based on: • ≤ (equal to or less than) • ≥ (equal to or more than) 15
Polygon:…use frequency and mid point frequency polygon 20 15 10 5 Mid point 0 27 36 45 54 63 72 81 18
Histogram:…use freq and lower class boundary frequency HISTOGRAM 20 15 10 5 LCB 0 22,5 31,5 40,5 49,5 58,5 67,5 76,5 85,5 19
Ogive:…use cummulaive freq dan lower class boundary Cf 60 Less than OGIVE 20 more than 5 Lower class boundary 0 22,5 31,5 40,5 49,5 58,5 67,5 76,5 20
Exercise : Make a complete frequency distribution tables and graphs of polygons, histograms, and the ogive of the data distribution follows
Apa yang dimaksud UKURAN PEMUSATAN ? • Ukuran nilai pusatyaitu nilai • yang mewakili suatu deretan/ • rangkaian/gugusan data • Ukuran Pemusatan mencakup : • MEAN, MEDIAN,dan MODUS 22
MEAN, MEDIAN, MODUS Data Tidak Dikelompokkan
x x1+x2+x3…xi n = n Σxi i=1 x x = n MEAN(Me) ---- rata-rata hitung • Diperoleh dengan menjumlahkan seluruh nilai data (x1+ x2 +…+ xi) dibagi dengan banyaknya data (n). • Rata-rata hitung yang diambil dari data sampel • dilambangkan dengan x bar = atau
MEDIAN (Md) • Nilai yang ada di tengah-tengah rangkaian data, setelah diurutkan dari data dengan nilai terkecil sampai terbesar. • Letak Md data tidak dikelompokkan dicari dengan : LMd = (n + 1) : 2 n adalah banyaknya data
Contoh 6.2 :Median data tidak dikelompokkan LMd = (7 + 1) : 2 = 4 (median terletak pada urutan data ke 4) n = 7 Nilai Md
Bagaimana menentukan Md jika banyaknya data adalah genap ? n = 8 LMd = (8 + 1) : 2 = 4,5 Median terletak pada data urutan ke 4,5 atau antara urutan ke 4 dan 5. Berapa Nilainya ? Md = (7 + 8) : 2 = 7,5