1 / 28

MEAN, MEDIAN, MODE

MEAN, MEDIAN, MODE. FREQUENCY DISTRIBUTION TABLE. A table containing array data have been grouped by class or specific categories. How to make it?. 2. SEE This Data. 3. FIRST STEPS ARE MAKE A FREQUENCY DISTRIBUTION TABLE. 4. STEP 01 :. SET NUMBER OF CLASSES ( Jumlah Kelas JK ).

lela
Download Presentation

MEAN, MEDIAN, MODE

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. MEAN, MEDIAN, MODE

  2. FREQUENCY DISTRIBUTION TABLE A table containing array data have been grouped by class or specific categories. How to make it? 2

  3. SEE This Data 3

  4. FIRST STEPS ARE MAKE A FREQUENCY DISTRIBUTION TABLE 4

  5. STEP 01 : SET NUMBER OF CLASSES (Jumlah KelasJK) JK = 1 + 3,322 log n H.A. Sturges (1926) JK = number of classes n = the number of observations (data) 5

  6. Form the data, number of classes are JK = 1 + 3,322 log 60 = 1 + 3,322 (1,778) = 1 + 5,907 = 6,907 ≈ 7 class 6

  7. STEP 02 : Set class interval ( Interval KelasIK) (Xt – Xr) IK = JK Dimana : IK = class inteval Xt = highest data Xr = lower data Xt – Xr = Range 7

  8. From the data obtained Xt = 85 and Xr = 23, then IK = ....? (Xt – Xr) IK = JK (85 – 23) IK = 7 = 8,8 ≈ 8 8

  9. The frequency table is : 9

  10. WHAT YOU NEED TO KNOW FROM THE FREQUENCY DISTRIBUTION TABLE 10

  11. (Class Limit) • Lower Class Limit lowest possible values within a class interval. Example In the class interval : 20-29; 30-39; 40-49 the lower class limit are 20, 30, dan 40. • Upper Class Limit highest possible values within a class interval Example In the class interval 20-29; 30-39; 40-49 The highest class limit 29, 39, dan 49. 11

  12. Class Boundaries • Lower Class Boundary The real lower class boundary LCB – 0,5 Ex : Class interval 20-29; 30-39; 40-49, the LCB 19,5; 29,5; dan 39,5. • Upper Class Boundary The real upper class boundary UCL+ 0,5 Ex : Class interval 20-29; 30-39; 40-49, the UCB 29,5; 39,5; dan 49,5. 12

  13. Mid-point or class mark Mid-point ith = (LCL + UCL) : 2 Dimana : MP I = Mid point class ith (1,2,3,4,…..i) LCL = Lowe class limit UCL = Upper class limit 13

  14. Mid point for class interval on Table 5.1 : 14

  15. Cummulative Frequency • Cf : frequencies results from the merger of the class frequency with the class freqency before • Cf can be calculated based on: • ≤ (equal to or less than) • ≥ (equal to or more than) 15

  16. Comulative frequency for Table 5.1 : 16

  17. presented in graphical is certainly interesting 17

  18. Polygon:…use frequency and mid point frequency polygon 20 15 10 5 Mid point 0 27 36 45 54 63 72 81 18

  19. Histogram:…use freq and lower class boundary frequency HISTOGRAM 20 15 10 5 LCB 0 22,5 31,5 40,5 49,5 58,5 67,5 76,5 85,5 19

  20. Ogive:…use cummulaive freq dan lower class boundary Cf 60 Less than OGIVE 20 more than 5 Lower class boundary 0 22,5 31,5 40,5 49,5 58,5 67,5 76,5 20

  21. Exercise : Make a complete frequency distribution tables and graphs of polygons, histograms, and the ogive of the data distribution follows

  22. Apa yang dimaksud UKURAN PEMUSATAN ? • Ukuran nilai pusatyaitu nilai • yang mewakili suatu deretan/ • rangkaian/gugusan data • Ukuran Pemusatan mencakup : • MEAN, MEDIAN,dan MODUS 22

  23. MEAN, MEDIAN, MODUS Data Tidak Dikelompokkan

  24. x x1+x2+x3…xi n = n Σxi i=1 x x = n MEAN(Me) ---- rata-rata hitung • Diperoleh dengan menjumlahkan seluruh nilai data (x1+ x2 +…+ xi) dibagi dengan banyaknya data (n). • Rata-rata hitung yang diambil dari data sampel • dilambangkan dengan x bar = atau

  25. Contoh 6.1 : mean data tidak dikelompokkan

  26. MEDIAN (Md) • Nilai yang ada di tengah-tengah rangkaian data, setelah diurutkan dari data dengan nilai terkecil sampai terbesar. • Letak Md data tidak dikelompokkan dicari dengan : LMd = (n + 1) : 2 n adalah banyaknya data

  27. Contoh 6.2 :Median data tidak dikelompokkan LMd = (7 + 1) : 2 = 4 (median terletak pada urutan data ke 4) n = 7 Nilai Md

  28. Bagaimana menentukan Md jika banyaknya data adalah genap ? n = 8 LMd = (8 + 1) : 2 = 4,5 Median terletak pada data urutan ke 4,5 atau antara urutan ke 4 dan 5. Berapa Nilainya ? Md = (7 + 8) : 2 = 7,5

More Related